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ABSTRACT

Here we illustrate how Jones’ polynomials are derived from the kinetic helicity of
vortical flows, and how they can be used to measure the topological complexity of fluid
knots by numerical values. Relying on this new findings, we show how to use our adapted
Jones polynomial in a new framework by introducing a knot polynomial space whose
discrete points are the adapted Jones polynomials of fluid knots, interpreting the topo-
logical simplification associated with the natural decay of reconnecting fluid knots as
geodesic flows on this space.

Keywords: Topological fluid mechanics; helicity; vortex knots and links; Jones polyno-
mial; knot polynomial space.
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1. Topological Interpretation of Fluid Helicity in Terms of Linking
Numbers and Crossing Signs

A central task of topological fluid mechanics is to determine the relation be-
tween topological invariants of fluid structures, such as vortex knots and links,
and their dynamics and energy contents. This search started long time ago with
Kelvin’s vortex atom theory [40], and his ambitious aim to provide a mathematical

∗Corresponding author.
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justification for the observed discrete energy spectra of chemical elements. We had
to wait for another 100 years, with the seminal work of Moffatt [24], to realize
that one of the most fundamental conserved quantities of ideal fluid mechanics, i.e.
the helicity of fluid flows, admits topological interpretation. In 1984 Berger and
Field [5] made further progress considering the decomposition of magnetic helicity
of a finite number of isolated flux tubes in terms of the geometry and topology of
the constituent field lines. The study of the topological implications of helicity, and
its relation to energy, are now a central topic of modern research in fluid mechan-
ics [25, 38, 44]. In this sense topological fluid mechanics represents the first example
of a true, topological field theory [1, 29].

For vortical flows in an unbounded, simply connected domain of R3 kinetic
helicity is defined [27, 37] by the volume integral

H =

∫

V
u · ω d3x, (1.1)

where u is the velocity, and ω = ∇×u the vorticity in the fluid volume V . Magnetic
helicity is defined similarly by replacing u with the magnetic vector potential A,
and ω with the magnetic field B. In the case of incompressible flows, we have also
the supplementary condition ∇ · u = 0. Moreau [27] was the first to prove the
conservation of the helicity (1.1) under diffeomorphisms of the background flow
maps in V .

Considering the divergence-free ω as the observable gauge field, we can interpret
the velocity field u given by the Biot–Savart formula

u(x) =

∫

V

ω(x′)× (x− x′)

|x− x′|3 d3x′. (1.2)

as a gauge potential. Hence, Eq. (1.1) being a functional integral of ω (see [1,
Theorem 1.15]) can be interpreted as a global, physical observable. Moreau’s proof
of the conservation of kinetic helicity in ideal fluid mechanics can thus be recast in
the following:

Theorem 1.1 ([1]). Let ω be a divergence-free vector field defined on a manifold
M. The helicity integral (1.1) is conserved under any arbitrary, volume-preserving
diffeomorphism of M.

It is interesting to note that well before Moreau’s proof of the invariance of H
in fluid mechanics, it was Whitehead [42] who recognized (in 1946!) the topological
character of Eq. (1.1), by interpreting H as Hopf invariant.

1.1. Helicity in terms of linking numbers

When the vorticity field is localized in flux tubes made of a bundle of vortex lines
running parallel to the tube axis (no flux through the tube boundary), Eq. (1.1)
admits interpretation in terms of linking numbers. For thin flux tubes forming
knots and links in an ideal fluid (no dissipation or resistive effects) computation of

2340024-2

J. 
K

no
t T

he
or

y 
R

am
ifi

ca
tio

ns
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 X

in
 L

iu
 o

n 
09

/1
8/

23
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



2nd Reading

July 5, 2023 20:50 WSPC/S0218-2165 134-JKTR 2340024

A new framework for the Jones polynomials of fluid knots

Fig. 1. (Top) In a footnote to his paper on the conservation of helicity [27, p. 2812, footnote
1] Moreau considers the case of two linked vortex rings, anticipating (without proof) the correct
value of helicity; (bottom) English translation.

the kinetic helicity simplifies. In a footnote to his paper (see Fig. 1) Moreau [27]
considers the case of two linked vortices, anticipating without proof the correct
result later proved by Moffatt in 1969 (see below). The demonstration that the
helicity integral can indeed be expressed in terms of the linking number was given
by Moffatt [24], and then extended by Moffatt and Ricca [26, 33] to include self-
linking. In the case of an N -component link L =

⊔N
i=1 Ki, where each Ki is a vortex

tube of flux Φi, we have

Theorem 1.2 ([24, 26]). The helicity of a vortex link L is given by

H(L) =
∑

i"=j

ΦiΦjLkij +
∑

i=j

Φ2
iSli, (1.3)

where Lkij ≡ Lk(Ki,Kj) is Gauss’ linking number of Ki and Kj , and Sli ≡ Sl(Ki)
is the Călugăreanu–White self-linking number of Ki.

A sketch of the proof is shown in Fig. 2, where the first sum in (1.3) is referred

Fig. 2. Scheme of the proof of Hmutual [24], and of Hself [26].
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to as mutual helicity Hmutual, and the second sum as self-helicity Hself . Evidently,
when Φ1 = · · · = ΦN = Φ (a typical situation for quantum vortex defects) Eq. (1.3)
simplifies further, taking the form

H(L) = Φ2




∑

i"=j

Lkij +
∑

i=j

Sli



 . (1.4)

1.2. Helicity computation in terms of crossing signs

It is useful to recall that the self-linking number Sl is a topological invariant of a
framed knot, and it admits decomposition according to the fundamental formula
[6, 41]

Sl = Wr + Tw, (1.5)

where Wr denotes the writhing number, and Tw the total twist number (sum of
the normalized total torsion T and intrinsic twist T0), all global geometric quan-
tities of the framed knot. Since the computation of the volume integral (1.1) is
rather difficult, Eq. (1.3) provides a remarkable simplification in terms of measur-
able quantities, quite convenient for theoretical progress and practical applications.
By identifying the tube centerline with the knot, a particularly useful approach to
compute mutual linking and writhing number is offered by the algebraic interpreta-
tion of these quantities in terms of signed crossings [34, 35]. According to the sign
convention of Fig. 3(a), we have

Lk(Ki,Kj) =
1

2

∑

r∈{Ki$Kj}

εr , Wr(Ki) =

〈
∑

r∈{Ki$Ki}

εr

〉
, (1.6)

where {Ki%Kj} and {Ki%Ki} denote, respectively, the set of apparent intersections
of the tube centerlines of Ki and Kj , and of self-intersections of Ki given by the
indented link projections; angular brackets denote averaging over all directions of
projection. An elementary example of the linking computation for a pair of loops by
the left-hand side formula of (1.6) is shown in Fig. 3. The right-hand side formula
for the writhing numberWr above is exact, but the theoretical value can be approx-
imated by estimating Wr through a finite number of projections. Direct application

(a) (b) (c)

Fig. 3. (a) Algebraic crossing sign convention; (b) indented diagram of a 2-component unlink
(Lk = 0); (c) indented diagram of the negative Hopf link (Lk = −1).
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(a) (b)

Fig. 4. (Color online) Knot framing is given by the mathematical ribbon (visualized by small,
yellow arrows) prescribed on the knot: (a) twist is visualized by the uniform rotation of the flux
tube field lines with respect to the ribbon around the knot centerline (blue curve) ; (b) a framed
trefoil (pictures taken from [12]).

of this simple technique has proven to be accurate, even when only three mutually
orthogonal projections are considered [3]. The two contributions left out from the
computation of Sl are the total torsion and the intrinsic twist. Total torsion T is
given by the geometry of the knot, and because it involves third derivatives of the
arc-length, its contribution is generally rather modest (amounting to just a few
percentages of the total Sl); thus, to a first approximation it can be ignored.

The intrinsic twist T0 of a physical knot is, in general, very hard to compute. It
is given by the uniform rotation of the field lines with respect to the knot framing
(see Fig. 4). For an approximated estimate of total helicity we can thus rely on
diagram projections to get

H(L) ≈ Φ2



1

2

∑

r∈{Ki$Kj}

εr +

〈
∑

r∈{Ki$Ki}

εr

〉

⊥



 , (1.7)

where 〈. . .〉⊥ denotes estimated averaging over mutually orthogonal projections.
From direct numerical simulations of fluid flows, however, helicity can be computed
straightforwardly by its integral definition through (1.1). In this case, we can esti-
mate total twist by the combined use of (1.1) and (1.7), to get

Tw(L) =
∫

V
u · ωd3x− Φ2



1

2

∑

r∈{Ki$Kj}

εr +

〈
∑

r∈{Ki$Ki}

εr

〉

⊥



 . (1.8)

This information is quite useful to take account of the energy transfers of interacting
flux tubes.

2. Helicity as an Abelian Chern–Simons Action

Topological information based purely on linking numbers has a well-known limita-
tion, due to the limited ability of linking numbers to detect topologically different
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(a) (b) (c)

Fig. 5. (a) 3 unlinked circles, (b) 3-component link forming the Borromean rings, and (c) the
Whitehead link; regardless of their different topologies, all these link types share the same zero
linking number.

link types. The three cases considered in Fig. 5 demonstrate the failure of the link-
ing number to detect different topologies. Evidently, any helicity computation based
purely on linking numbers will suffer from this limitation. As we know, more pow-
erful topological information comes from knot polynomials. In order to introduce
these invariants in topological fluid mechanics, it is useful to re-consider helicity in
a new setting.

In the language of exterior differential forms, the velocity field is a 1-form u =
uidxi, with the 2-form given by du = 1

2∂iujdxi ∧ dxj (∧ denoting wedge product).
Vorticity is also a 1-form, defined by the Hodge dual ω = ∗du, i.e. ω = ωidxi =
(ε jk

i ∂juk)dxi. The helicity integral (1.1) can thus be written as a 3-form, given by

H =

∫

V
u ∧ du. (2.1)

In this form, the integral above can be recognized as an Abelian Chern–Simons (CS)
action. Generally speaking, a CS action SCS with a generic, non-Abelian group G
is given by

SCS =
k

4π

∫

M
CS(A) =

k

4π

∫

M

(
A ∧ dA+

2

3
A ∧ A ∧A

)
, (2.2)

where k/4π ∈ R is a (level) parameter, CS(A) the so-called CS 3-form, A = A(x) a
connection 1-form on the principal G-bundle (i.e. a gauge potential); A = Aa

i Tadxi,
with {Ta} (a = 1, . . . , dim(G)) are the generators of G, and {xi} (i = 1, 2, 3) the
coordinates of the 3-dimensional base manifold M. When G is non-Abelian (the
generic case) [Ta, Tb] ,= 0, and the cubic term A∧A∧A does not vanish. But in the
special case of G = U(1) (Abelian group) the cubic term in (2.2) vanishes, so that

SCS =
k

4π

∫

V
A ∧ dA . (2.3)

By setting the prefactor k/4π = 1 the integral CS 3-form can be identified
with (2.1), by interpreting A as the velocity field u (cf. the London relation in
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superconductivity [11]). Kinetic helicity can thus be seen as a special Abelian case
of the CS action (2.2).

Following the work of Witten, CS theory has become the benchmark of a topo-
logical quantum field theory (TQFT). As shown by Witten [43] , the global, physical
observables of the CS theory are given by the Wilson loops represented by knots in a
3-dimensional spacetime. Their values are computed by knot polynomial invariants
that generalize the celebrated Jones polynomial [14]. A physical interpretation of
these invariants comes from the TQFT description of the CS path integrals. These
are defined as the vacuum expectation values of the Wilson loops, according to the
expression

〈
∏

i

ei
∮
Ki

A

〉
=

1

Z

∫
[DA]

(
ei

∑
i

∮
Ki

A)ei2πSCS . (2.4)

Wilson loops are gauge invariant functionals that arise from the parallel transport of
the gauge field A along closed loops given by the knots Ki (i = 1, . . . , N), and they
are represented in (2.4) by the expression exp(i

∑
i

∮
Ki

A). The term [DA] denotes
functional integration performed on A, and Z a partition function that plays the role
of a normalization constant. By replacing the potential A with the velocity u the
CS action (2.3) (appropriately re-scaled) becomes the helicity integral; substituting
this expression into the integrand of (2.4), we have

(
e
i
∑

i

∮
Ki

u)
ei

∫
V u∧du =

(
e
i
∑

i

∮
Ki

u)
eiH . (2.5)

Now let us go back to vortex knots. Since we consider fields localized in thin
flux tubes, we can take ω = ω0t̂, with ω0 constant and t̂ unit tangent to the tube
centerline, and reduce the volume integral (1.1) to a line integral given by the field
line helicity [4, 36]

H =
∑

i

Φi

∮

Ki

u · dl, (2.6)

where as usual Φi (constant) denotes the flux of vorticity, and dl the elementary unit
length along the knot Ki. Total helicity H is thus reduced to a sum of line integrals
along Ki [3]. For simplicity, we can take Φi = Φ = 1, so we have H =

∑
i

∮
Ki

u,
where u denotes the Biot–Savart velocity 1-form. By substituting this line integral
into (2.5), we have

(
ei

∑
i

∮
Ki

u)eiH = f
(
ei

∮
Ki

u·dl), (2.7)

function of eH only (in terms of the field line helicity). In the present approach,
the path-ordering integral formalism can be dropped (not being necessary for an
Abelian theory), so that we can proceed with the derivation of the knot polynomials
from the field line functional eH .
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3. Physical Heuristics for Deriving the Jones and HOMFLYPT
Polynomials from Helicity

Here we present a concise review of the work done by Liu and Ricca in 2012 and 2015
to derive and apply Jones and HOMFLYPT knot polynomials of classical knot the-
ory to topological fluid mechanics. A knot polynomial is an invariant Q = Q(K; ξi)
which assigns to each knot or link K a Laurent polynomial in one or more vari-
ables ξi (i = 1, 2, . . .) with integer coefficients. Since the field line helicity (2.6) and
the knot polynomial are invariants under an ideal flow map ϕ, any diffeomorphic
deformation of K leaves H and Q invariant. For vortex knots, the polynomial vari-
ables ξi play the role of gauge scalar quantities, so that the invariance of Q requires
the vanishing covariant derivative (and parallel transport) of ξi under ϕ, along K
and in time. In the present context, a gauge covariant derivative is a Lagrangian
derivative, so that for each u we must have (see [9], Eqs. (3.18)–(3.19) replacing A
with u)

dϕ(ξi)

ds
= (u ·∇sx)ϕ(ξi) = (u · t̂)ϕ(ξi) (i = 1, 2, . . .), (3.1)

where s is some parameter along the knot centerline, and ∇sx = dx/ds = t̂ is the
unit tangent to K. Thus, under appropriate re-scaling direct integration of (3.1)
from some initial to some final state gives ϕ1 = ϕ0(ξi), with

ξi = e
∮
K u·t̂ds = e

∮
K u·dl (i = 1, 2, . . .). (3.2)

A fluid knot K has orientation inherited by the constituent field lines. Denoting
by the oriented unknot, and by , and the overcrossing, undercrossing and
smoothing of the distinguished crossing site in the knot diagram D, we have [14].

Definition 3.1. The Jones polynomial V (K) = V (K; t) of the oriented knot K in
the single parameter t is defined by

(i) : (3.3)

(ii) : (3.4)

Direct application of the skein relation above gives the Jones polynomial of
knots and links [15]. Using (3.2) above, we can prove the following result:

Theorem 3.2 ([19]). Let H = H(K) be the helicity of a physical, framed knot K.
Then

eH(K) = e
∮
K u·dl, (3.5)

appropriately re-scaled, satisfies (with a plausible statistical hypothesis) the skein
relation of the Jones polynomial V = V (K).

For details of the proof, see [19, 30]. The derivation is outlined in Fig. 6, where
we make two assumptions; (i) since vortex knots are naturally led to interact and
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Fig. 6. Scheme of the proof of Theorem 3.2 according to [19].

Fig. 7. (Color online) Crossing state decomposition by addition and subtraction of “imaginary
paths” (blue online); note the interpretation of the crossing state in terms of the closed curl.

reconnect locally, in analogy with the theory of particle interactions we assume
that reconnection events can be described by a virtual operation of addition and
subtraction of vortex strands (interpreted mathematically as “imaginary paths”),
according to the scheme of Fig. 7. Hence, each unoriented crossing state admits the
following hypothetical decomposition:

(3.6)

(3.7)

One then proceeds to encode the decompositions above into the evaluation of the
Kauffman bracket polynomial for unoriented knots [15], i.e.

(3.8)

where ζ (the bracket variable) is also a ξ-variable obeying Eq. (3.2). (ii) We also
assume (statistical hypothesis) that the two decompositions above have equal prob-
ability to occur (cf. [10, Wick’s Theorem, p. 158]), noting that the subsequent strand
orientation breaks the 90◦ rotational symmetry of these decompositions, thus en-
tailing an ergodic assumption.

For physical applications, we can relate the Jones single variable t with the
helicity H(K); considering vortex knots as zero-framed knots, writhe and twist are
interlocked by the zero helicity condition (as for vortex defects in condensed matter
physics) Sl = Wr + Tw = 0. By identifying (say) writhe with the t variable, we
can take, for example

t1/2 = eH = eλωWr, (3.9)

where λω ∈ [0, 1] represents the uncertainty associated with the directional writhe.
From direct measurements, or estimates, of the average writhe 〈Wr〉 we can then
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associate a numerical value to the topology of fluid knots, given by the adapted
Jones polynomial.

Following a similar strategy, we can extend this approach to derive from the
helicity H(K) the 2-variable HOMFLYPT polynomial P (K) = P (K; a, z) in the
parameters a and z [13, 28]. We have

Theorem 3.3 ([20]). Let H = H(K) be the helicity of a physical knot K. Then

eH(K) = e
∮
K u·dl, (3.10)

appropriately re-scaled, satisfies (with a plausible statistical hypothesis) the skein
relation of the HOMFLYPT polynomial P = P (K).

The derivation in this case is more elaborate. Since HOMFLYPT is a two-variable
polynomial, it cannot be derived directly from the one-variable bracket evaluation,
and it is here that the two distinct paths, denoted by Steps 1 and 2 in Fig. 8, come
into play. In this heuristic, we first observe that the regular isotopy version of the
HOMFLYPT polynomial is determined by the following equations:

(i) : (3.11)

(ii) : (3.12)

(iii) : (3.13)

where denotes the Reidemeister twist move. By applying (3.13) to Eqs. (3.12),
we have

(3.14)

Fig. 8. Scheme of the proof of Theorem 3.3 according to [20].
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that is

(3.15)

where δ = (a− a−1)/z. By extending this equation to the knot diagram D, we get

(3.16)

which can be considered a supplementary rule for the derivation of the knot poly-
nomial. The regular isotopy version of the HOMFLYPT with variables z and a
specializes to a regular isotopy version of the Jones polynomial when z = a− a−1.
We make the physical heuristic that the variables a and z are independent of one
another. Then these relations become relations for the HOMFLYPT polynomial,
and this second stage is accomplished. For further details on these constructions,
see [20].

The physical interpretation of the two variables is accomplished by taking z =
k − k−1, so that

k = e2λωWr, a = eλτTw, (3.17)

where λτ ∈ [0, 1] represents the uncertainty associated with twist; note that λω and
λτ are also totally independent from one another. Since reduction to Jones implies
ak2 = 1, from (3.17) we have

λτTw = −2(2λωWr) = −4λωWr, (3.18)

that gives a relation between writhe and twist, i.e. Wr = −(λτ/4λω)Tw. As we
did for the Jones polynomial, the adapted HOMFLYPT can now be computed by
the numerical values obtained from 〈Wr〉 and 〈Tw〉, so that we can quantify the
topology of physical knots and links by numerical values. For example, if we take
the average values 〈λω〉 = 〈Wr〉 = 1/2, and 〈λτ 〉 = 〈Tw〉 = 1/2, we obtain

z = e1/2 − e−1/2 ≈ 1.04, a = e1/4 ≈ 1.28 . (3.19)

The table of Fig. 9 shows the computation of the adapted HOMFLYPT polynomial
for the numerical values of a and z given by (3.19). A similar table for the adapted
Jones polynomial [31] can evidently be obtained from the condition ak2 = 1.

3.1. A test case: Cascade of torus knots and links by adapted
HOMFLYPT values

Work done on vortex knot dynamics [16, 17, 38] shows that the evolution of torus
knots is governed by a generic process of topological simplification, that gradually
converts complex knots to simpler knots and unknots of ever decreasing smaller
scales, towards final dissipation. The change of topology, due to a sequence of
orientation-preserving reconnections induced by the local physics, generates a time-
dependent pattern that can be exemplified by the topological cascade of torus
knots and links {T (2, n)} (n ∈ N) shown in Fig. 10. Since the torus knots and links
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Fig. 9. HOMFLYPT polynomials and numerical values for some elementary oriented knots and
links obtained by taking a = 1.28 and z = 1.04.

family admits representation in closed braid form, assuming reduction of topological
complexity by a single reconnection event, we can apply the HOMFLYPT skein
relation [15] in a recursive way to get the following result.

Theorem 3.4 ([20]). Let us consider the family {T (2, n)} of torus knots and links.
The HOMFLYPT polynomial of T (2, n) is given by

P (T (2, n)) =

[
kn−2 − (−k)−(n−2)

an−3(k + k−1)

]
P (T (2, 3))

+

[
kn−3 − (−k)−(n−3)

an−3(k + k−1)

]
P (T (2, 2)), (3.20)

where

P (T (2, 3)) = 2a−2 + a−2z2 − a−4, P (T (2, 2)) = a−1z + (a−1 − a−3)z−1.

(3.21)

For details of the proof, see [21, 31]. By relying on the information available
from experiments, and applying the theory presented in the former section, we can
compute the adapted HOMFLYPT polynomial P (T (2, n)) to quantify the sequence
of fluid knots {T (2, n)}. Using the values given by (3.19) (with k = e1/2 ≈ 1.65) we

Fig. 10. Time sequence of topological transitions of torus knots and links by a single reconnection
event, starting from the knot T (2, 6).
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Fig. 11. HOMFLYPT values computed for the family of torus knots/links {T (2, n)}, n =
0, 1, 2, . . . , 10.

obtain the results shown in Fig. 11. As we see, the numerical values form a mono-
tonic decreasing sequence that is consistent with the observed topological cascade
and the associated energy decay. Note that the same monotonic behavior is ob-
tained by other (appropriate) different choice of numerical values, a fact rooted
in the decreasing complexity of the original knot polynomials. A physical justifi-
cation is given by considering the small, but non-zero reduction of the physical
knot length due to the reconnection process, that produces the topological change.
Since the kinetic energy of thin knots is proportional to the knot length, progressive
shortening of the knot through topological simplification is often accompanied by
a corresponding energy decrease. This correspondence is intriguing, and motivates
the new approach to topological dynamics that is presented in the following section.

4. Jones Polynomials in Knot Polynomial Space

The adapted Jones polynomial introduced in Sec. 3 can be employed by defining
a knot polynomial space to compute the untying pathways (seen as geodesics on
this space) associated with the topological simplification of physical knots. For
simplicity, let us confine the discussion to the subset of prime knots with cmin ≤ 9;
for these knots the Jones polynomial has positive exponents of highest degree n,
and it is in one-to-one correspondence with the given knot type. A knot polynomial
space can thus be defined by a discrete set of points that represent the knot types
considered through their Jones polynomials. We have [22].

Definition 4.1. The knot polynomial space V+
n is an n-dimensional, discrete, Eu-

clidean space endowed by an Euclidean metric, whose isolated points (singletons)
are the adapted Jones polynomial V (K) up to the degree n.
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Fig. 12. A pictorial representation of the knot polynomial space V+
n , where each singleton (black

dot) is represented by the knot given by its Jones polynomial. Height is given by the adapted
Jones polynomial value according to eλω ∈ [1, e].

In order to compute the geodesics, we must endow V+
n with a metric; since

singletons are knot polynomials we can use orthogonal polynomials to construct
a suitable metric. The Legendre polynomials {Pn(x)} of degree n, with weight
function unity and inner product defined over the finite interval [−1, 1], prove to
be suitable to this end. These are given by

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x), . . . ,

with orthogonality condition given by

〈Pn, Pm〉 =
∫ 1

−1
Pn(x)Pm(x)dx =

2

2n+ 1
δnm. (4.1)

The unit-norm Legendre polynomial is thus defined by

Ln(x) =

√
2n+ 1

2
Pn(x), (4.2)

so that (4.1) becomes

〈Ln, Lm〉 =
∫ 1

−1
Ln(x)Lm(x)dx = δnm. (4.3)

This endows V+
n with Euclidean metric. The following result can be proved [18].

Theorem 4.2. A polynomial Vn(x) of degree n can be expanded into the first n+1
Legendre polynomials L0(x), L1(x), . . ., Ln(x) that provide a complete basis for the
knot polynomial space V+

n .

For physical applications (and for the sake of example) consider now the adapted
Jones polynomial with t1/2 = e2λωWr, 〈Wr〉 = 1/2, and λω ∈ [0, 1]. Taking x = t1/2,
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we have x = eλω ∈ [1, e]. In order to use (4.3), we must rescale the interval [1, e]
into [−1, 1] by the new variable x′

x′ =
2

e− 1
x− 1 + e

e− 1
, (4.4)

so that
∫ e

1
f [Vn(x)]dx =

2

e− 1

∫ 1

−1
f [V (x′)]dx′. (4.5)

Given the metric (4.3), we can now compute the coordinates of the knot K by iden-
tifying its adapted Jones polynomial V (K) of degree n with the rescaled Legendre
polynomial Vn(x′); we thus have

V (K) = VK(x
′) = c0L0(x

′) + c1L1(x
′) + · · · + cnLn(x

′), (4.6)

where the coordinates of K are given by

ci =

∫ 1

−1
VK(x

′)Li(x
′)dx′ (i = 0, . . . , n). (4.7)

The geodesic distance between the knots Ki and Kj can thus be defined as
follows:

d(Ki,Kj) = ‖V (Kj)− V (Ki)‖ =

[
2

e− 1

∫ 1

−1
(VKj (x

′)− VKi(x
′))2dx′

]1/2
. (4.8)

Let us identify the origin with the unknot O, so that VO = 1 is the singleton value
at the origin. The geodesic distance d(K) of the knot K from the unknot O is thus
given by

d(K) = ‖VK − 1‖ =

[
2

e− 1

∫ 1

−1
(VK(x

′)− 1)2dx′
]1/2

. (4.9)

4.1. Topological cascade by optimal pathways as geodesic flows in
knot polynomial space

The theory presented above can be applied to the case studied in [39]. For this we
consider the various unlinking pathways that bring the torus knot T (2, 6) to the
unknot O (denoted by T (2, 1)) by successive, single, orientation-preserving recon-
nections that untie the initial knot in a stepwise manner, assuming that the process
is governed by a continuous reduction of topological complexity. As shown by the
diagrams of Fig. 13 we identify 11 knots/links and 17 different routes. By using the
theory above we want to compute the probability associated with each unlinking
pathway Πi (i = 1, . . . , 17), and compare the results with those in [39], obtained by
different methods. The coordinates of the 11 knots/links of the diagrams are com-
puted using Eq. (4.7) (see [22, Table 1]); the 17 routes of the diagrams of Fig. 13
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Fig. 13. (Color online) Diagrammatic representation of the 17 unlinking routes (different col-
ors online) bringing the knot T (2, 6) to the unknot T (2, 1) by a sequence of single, orientation-
preserving reconnections that simplify topological complexity in a stepwise manner (from [22]).

denote the 17 unlinking pathways, given by

Π1 : T (2, 6) → T (2, 5) → T (2, 4) → T (2, 3) → T (2, 2) → T (2, 1),

Π2 : T (2, 6) → T (2, 5) → D → T (2, 2) → T (2, 1),

Π3 : . . . .

For each pathway Πi , we compute the total length di given by the algebraic sum of
the intermediate distances between knot types along Πi; for example, for the path
Π1 we have

d1 = d(T (2, 6), T (2, 5)) + d(T (2, 5), T (2, 4)) + · · ·+ d(T (2, 2), T (2, 1)).

If we interpret the shortest path as the optimal route towards the unknot, path-
way lengths can be related to the probability of occurrence by some simple def-
initions. For this let us define the 0-path by Π0 : T (2, 6) −→ T (2, 1), of length
d0 = d

(
T (2, 6), T (2, 1)

)
; the deviation of route Πi from the 0-path Π0 is given by

σi =
di − d0

d0
. (4.10)
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The probability associated with the occurrence of the pathway Πi is thus de-
fined by

pi =
σ−1
i∑17

i=1 σ
−1
i

, (4.11)

which obviously satisfies the condition
∑17

i=1 pi = 1. A direct computation for the
pathway Π1 shows that it has the smallest deviation σ1 = 2.68 × 10−4, and the
largest probability to occur p1 = 97.62%. It is interesting to note that the route
Π1 coincides with the sequence pictorially represented by Fig. 10. The monotonic
decreasing sequence of the HOMFLYPT values is also consistent with the present
computation based on the use of the adapted Jones polynomial. Route Π17 has
the largest deviation σ17 = 9.34 × 10−1, and the smallest probability to occur
p17 = 2.80%. Direct comparison of probability values obtained by [39] and by the
method presented here (see Fig. 14) shows very good agreement, and provides a
convincing proof of the validity of the theory outlined above.

From (4.9) we can introduce a new definition of topological complexity of a knot
Ki based on the distance d(Ki) [22].

Definition 4.3. The degree χ of topological complexity of a knot/link K is
defined by

χ(K) = ln(1 + d(K)). (4.12)

Fig. 14. Diagrammatic representation of the unlinking pathways bringing the knot T (2, 6) to the
unknot T (2, 1). In black probability values associated with the topological transitions computed by
the methods used by Stolz et al. [39]; in red probability values obtained by Eq. (4.11) (from [22]).
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Fig. 15. (Color online) Complexity degree χ plotted against the 11 knots of the diagram of
Fig. 14, listed according to the position #K tabulated according to their increasing ropelength.
The dashed line (blue) is the best-fit curve given by Eq. (4.13). The knots/links with the same
topological crossing number are grouped together in the highlighted regions.

Let us plot the values of χ = χ(#K) against the 11 knots considered above (see
Fig. 15), where #K is the position of the knot according to the increasing value
of its ropelength [2, 7]. Knots/links with the same topological crossing number are
grouped together in the highlighted regions. By interpolating these values with a
best-fit curve, we find

χ(K) = 6.3 ln#K − 0.13. (4.13)

The logarithmic behavior of the curve given by (4.13) is in good agreement with the
logarithmic behavior of the ground state energy spectra of magnetic tight knots and
links found by Ricca and Maggioni [32]. This is not surprising if we think that knot
complexity, which grows with crossing number, is related to the minimum number
of overpasses. Since knotted flux tubes are characterized by some physical thickness
(say δ), each overpass length is at least πδ long. Since the energy of fluid knots is
essentially proportional to the knot length, each reduction of crossing number must
be accompanied by some small, but non-zero reduction of energy, due to a length
decrease of (at least) πδ. The minimum number of overpasses is therefore associated
with some knot energy of strict topological nature. The minimum reconnection
number ℵr = cmin−1 can thus be taken as a measure of the knot energy that either
defines the ground state of a magnetic tight knot, or that can be absorbed by the
dynamical untying of a fluid knot.

5. Conclusions

Kelvin’s [40] vortex atom theory can be regarded as the first, true topological
field theory (ante litteram), but real progress in topological fluid mechanics took
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place only after the discovery of the conservation of helicity by Moreau in 1961, its
topological interpretation in terms of linking numbers by Moffatt in 1968, and its
application to vortex and magnetic fields that followed. In the quantum world, a
similar progress was done in an extremely short period of time due to the revolu-
tionary work of Witten in 1989, with the birth of topological quantum field theory.
The discovery of the Jones [14] polynomials, and their interpretation in connection
with the CS theory was essential for this progress. This proved useful for classical
field theory as well. In analogy with the Wilson loops of CS theory, fluid knots
of ideal fluid mechanics become the observables in an Abelian U(1) theory, from
which the Jones polynomials can be derived. With our work (done during the years
2012–2016) we have not only derived these polynomials from fluid helicity (vortex
or magnetic), but by exploiting the fact that in classical field theory observables are
measurable quantities (to any degree of accuracy!) we have also shown that (appro-
priately rescaled) the knot polynomials can be profitably used to assign numerical
values to the topological complexity of knotted fields. This realization has gradually
led people to look for the formation of knots [16, 23], and very complex ones have
been discovered in superfluid turbulence [8], where vorticity is entirely localized on
vortex lines. Since during evolution vortex knots reconnect undergoing by going
through a topological simplification towards fully developed turbulence [17, 45],
the intriguing question is to establish a relation between topological simplification
and energy cascade. The new framework based on the knot polynomial space [22],
where the untying pathways admit interpretation as geodesics on this space, seems
a promising and powerful tool for this search. The results obtained so far by ex-
ploiting knot polynomial information are quite promising, suggesting that there is
scope for further work in this direction.
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