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1. THE HELICITY OF A MAGNETIC FLUX TUBE VIA THE CALUGAREANU
INVARIANT

It is known that the magnetic structures present in the solar atmosphere can be considered
as embedded in a perfectly conducting fluid (at least over the characteristic length scales and
time scales of motion), in which the topology of the field lines is preserved. Plasma loops
in the solar corona can be conveniently modelled by magnetic flux tubes evolving in an ideal
magnetohydrodynamical (MHD) context. For simplicity, let us assume that the coronal domain
is filled by incompressible and inviscid fluid where no singularities are present (for example, no
current sheets); then, the solenoidal magnetic field B = B(X,t) = V x A(X,t), function of the
position vector X and time ¢, is advected by the fluid according to the Cauchy’s equation

0X;
5 ()

a result that incorporates both the convection of the magnetic field from the position a to the
position X and its rotation and distortion by the deformation tensor 8X;/8a;. The ambient
fluid flow induces a map which is a continuous, time-dependent, orientable and volume-preserving
diffeomorphism a — X of the fluid onto itself. Although the geometrical properties of the magnetic
structures can become very complex in time, their topological properties (such as linking and
knottedness) remain invariant during the motion.

B;(X,t) = Bj(a,0)

Suppose now that B is zero except in a thin magnetic flux tube of volume V and circular
cross-section. The magnetic helicity { of B, defined by

’H:va-BdV , @)

where n - B = 0 on the boundary of V and dV is the volume element d®X, is known to be
a conserved quantity under ‘frozen field’ distortion of the ambient medium (Woltjer, 1958) and
admits a topological interpretation (Moreau, 1961; Moffatt, 1969) in terms of the Cilugdreanu
invariant £, a measure of the self-linkage of a reference ribbon (Berger & Field, 1984; Ricca &
Moffatt, 1992). To clarify this point we make use of a ribbon model for the magnetic flux tube:
let C : X = X(s) be the magnetic centreline of the flux tube, parametrised by arc length s, and
let X* = X + €N be a neighbouring magnetic field line running all along X and placed a small
distance ¢ apart along a normal direction N to X. Let X and X* be the edges of a ribbon of
spanwise width € and let © be the angle of twist of the spanwise vector N relative to the Frenet
vectors (n, b) (principal normal and binormal to X). The (C&lugireanu) invariant £ is the limiting
form of the (Gauss) linking number of X with X* as € — 0. A direct derivation of this topological
invariant from the invariance of helicity has been given by Moffatt & Ricca (1992), showing that

H=L3 =(W+Tw)d? |, (3)
where the writhe W is given by
1 (dX x dX*) - (X — X*)
W= 47 cJe |X—X‘|3 : (4)
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(a) (b)
FIGURE 1. (a) The writhe of the plane projection of the space curve shown in the

» figure is +2, but its value avaraged over all projections is zero. (b) Nearly plane
knotted curve (except indentations in the plane to allow crossings) with W = —3.

and the total twist Tw is given by

1 do
Twhﬁ c(‘r+ E) ds , (5)

the sum of the normalised integral of torsion (7) and of the gradient of the twist angle (d©/ds); &
is the magnetic flux.

2. PHYSICAL INTERPRETATION OF WRITHE AND TWIST CONTRIBUTIONS
TO HELICITY

Equation (3) shows that % can be decomposed in two parts, the writhe and the twist
contribution. Although the sum of these two quantities is a topological invariant (helicity does not
change under continuous deformations), the writhe and twist contributions, taken separately, are
not invariant and their values change according with the change of geometry. This means that W
and Tw interchange continuously during the deformation.

The writhe W, given by eq. (4), is carachterised by the following properties: i) W depends only
on the geometry of the tube axis C; ii) W is invariant under rigid motions or dilations of the space
containing C' (conformal invariant), but its sign is changed by reflection; iii) in passing from an
undercrossing to an overcrossing of the strands of C (in some projection plane), its value jumps by
+2. The physical meaning of the writhe is evident by a close inspection of the integrand in eq. (4)
and the definition of solid angle: it has been shown (Fuller, 1971; Moffatt & Ricca; 1992) that W
can be interpreted in terms of the sum of signed crossings of the diagram of C in some projection
plane, averaged over all projections, namely

W=<ny(¥)—n_(v)> , (8)

where the angular brackets denote averaging over all directions ¥ of projection and ny denotes
the number of (+) crossings apparent from the direction of projection v (figure 1a). For a nearly
plane curve (except small indentations to allow crossings) the writhe can be directly estimated by
the sum of the signed crossings (figure 15).

The total twist T'w is given by eq. (5) and has the following properties: i) Tw is a continuous
function of C (even through self-intersection); ii) T'w is invariant under rigid motions or dilations
of the space containing the flux tube (conformal invariant), but its sign is changed by reflection;-
iii) Tw is additive: Tw(A + B) = Tw(A) + Tw(B), where A and B are two contiguous sub-strips
of the ribbon A + B. Part of the twist contribution to magnetic helicity is associated with the
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(a) (6)
F1GURE 2. In (a) the intrinsic twist of the field lines contributes to helicity, whereas
the writhe and the torsion contributions to helicity are identically zero. In (b) the
writhe and the torsion contributions to helicity are decidedly not zero and there is no
contribution from the internal twist of the field lines.

torsion of the tube axis C and part with what may be described as ‘intrinsic twist’ of the field lines
in the flux tube around C (figure 2).

Note that the total twist is a continuous function of C, but total torsion and intrinsic twist are
discontinuous in deformations that take the tube axis through an inflexion point (a point at which
the curvature vanishes) (Ricca & Moffatt, 1992; Moffatt & Ricca, 1992). Inflexional configurations
occur when twists are converted into writhes or vice versa. The occurrence of the mechanism that
converts twist into writhe is at the origin of the kink instability and plays a part in the generation
of a mechanical (and magnetic) support of cool plasma by critically twisted magnetic flux loops,
as discussed in the following section.

3. HAMMOCK CONFIGURATION OF A MAGNETIC LOOP-LIKE STRUCTURE

It is generally accepted that the coronal motion of magnetic structures is governed by
photospheric footpoint motions via line-tied field lines. The line-tying assumption provides a
natural mechanism for the generation of internal field line twisting in a flux loop by vortical
motion at the photospheric boundary. It has been shown (see, for example, Priest et al., 1989;
Finn et al., 1993, submitted) that at a critical footpoint twist, individual field lines may acquire a
concave-up curvature near their summits and, as a consequence, an initially simply bent magnetic
flux loop may take a suitable shape (a hammock-shaped configuration) so as to provide support
for cool plasma. In the force-free equilibrium, it has been found that a dip is produced at a critical
twist of order 2.

A simple kinematical model can be given based on the physical interpretation of writhe and twist
helicity contributions. Consider a semi-circular magnetic flux tube (half a torus) with no internal
twist of the field lines, whose footpoints are rooted in a vortical photospheric region (figure 3a).
The initial (open-)helicity of this configuration is zero. As vortical and shearing boundary motions
generate some twisting within the flux tube (as discussed, for example, by Berger, 1991) (figure
3b), twist helicity increases. This process stops only when a critical value for the internal twisting
of the field lines is reached, the threshold being determined by the geometry of the flux tube and
the magnetic tension.

When internal twist can no longer be introduced, any further increase in twist helicity by
boundary motions is converted into writhe helicity until a force-free equilibrium is reached and,
correspondingly, a dip is formed. After this stage, a further writhing of the flux tube is also
impeded and a kink mode instability develops. In forming a hammock configuration, the flux tube
centreline must pass through an inflexional configuration where curvature is zero, since a change
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(a) (b) (¢)
F1cuRrE 3. Deformation of a magnetic flux loop into a hammock configuration: above,
3D plots of the tube axis evolution as given by eqgs. (7); below, internal twist pictured
by a ribbon model. (a) Case of zero twist. (b) Case of half a twist. (¢) Case of one
footpoint revolution of the field lines, for which a hammock configuration is realised.

in concavity is invariably associated with the presence of inflexion points (figure 3¢). As the twist
increases, the tube axis X = (z, y, z) is generically deformed according to the equations

z = acos{ — c(Tw)cos 2¢
y = bsin§ — ¢(T'w)sin 26
z=c(Tw)siné Twe(0,1]
where a,b,c are configuration parameters (which depend on the MHD evolution), £ is a polar
coordinate and T'w is the total twist. Three-dimensional plots of X for Tw = 0, %, l(anda=b=1,
¢ = 1/2) are shown in figure 3. The kink mode instability that converts twist to writhe is naturally

associated with a transition to a lower energy state (Ricca, 1993, in preparation). This analysis
will be presented in a future paper.
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