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Abstract
Line defects are one-dimensional phase singularities (forming knots and links)
that arise in a variety of physical systems. In these systems, isophase surfaces
(Seifert surfaces) have the phase defects as boundary, and these Seifert surfaces
define a framing of the normal bundle of each link component. We define the
individual helicity for each component of a link singularity, and prove that each
individual helicity is zero if and only if there exists a Seifert framing for the
link. We extend these results to multi-armed defects. We prove that under anti-
parallel reconnection of defect strands total twist is conserved.
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1. Introduction

Line defects are one-dimensional phase singularities (i.e. loci where phase is ill-defined) that
emerge in a variety of physical systems as nodal lines of a governing complex wave function.
For example, in excitable media such as the Belusov–Zhabotinsky (BZ) chemical reaction
[1, 2 ], phase defects are spatially extended, one-dimensional regions that act as organizing
centers for the chemical waves that originate at these singularities and propagate in the bulk of
the system. These phase singularities also occur in optics as optical vortices [3, 4], in superflu-
ids as tiny vortex filaments, superconductors [5, 6], condensed matter physics [7, 8], ordered
media [9, 10], biological liquid crystals [11, 12], flame combustion [13], biological tissues [14]
and in the morphogenesis of cellular patterns [15, 16]. Line defects can be seen as loci where
surfaces associated with some physical property intersect in space. Typical examples include
vortices in superfluid 4He and in Bose–Einstein condensates (BECs), where particle density is
zero and vorticity is localized on a single line (with irrotational flow everywhere else).

Defects are characterized by their strength Γ, measured by the topological charge associ-
ated with the number n ∈ N of arms (or wave-fronts) that depart from the line [17–19]. Other
topological properties characterize defects when these form knots and links in space [20–26].
Topological complexity is either a natural product of physical evolution (as in quantum tur-
bulence [27]) or an artifact for possible applications [28]. Relationships between topological
properties of defects and existence and stability of such structures is currently an area of
intense, active research [29–32]. New evidence based on the Hermiticity properties of the gov-
erning Hamiltonian [33, 34], for instance, shows that topological properties of these systems
may influence stability. A ‘linking exclusion principle’ that prescribes the necessary condi-
tion for existence and topological entanglement of knots and links under Seifert framing (see
definition below) was heuristically put forward in the past [35, 36], but with the exception of
very particular cases [32], no sufficient condition for zero linkage was prescribed for Seifert
framed defects. A sufficient and necessary condition for zero linkage of Seifert framed defects
is given here in full generality. This is done by providing a rigorous topological proof for
both single- and multi-armed defects. Furthermore, by considering topological change due to
orientation preserving, anti-parallel reconnection of defect strands, we prove that total twist
of Seifert framed defects remains conserved across a reconnection event. This has important
implications for stability and energy considerations, and gives us useful information for the
emergence and production of new defects in physical systems.

The material is organized as follows: in section 2 we recall some basic concepts about line
defects, Seifert surfaces and the topological interpretation of helicity in terms of linking. In
section 3 we introduce the concept of phase map and Seifert framing and prove that each of
the individual helicities of the components of a defect link are zero if and only if the link is
Seifert framed (theorems 3 and 4). In section 4 we extend this result to multi-armed defects
(theorem 5). In section 5 we prove that under anti-parallel reconnection the total twist of a
defect remains conserved (theorem 6). Conclusions are finally drawn in section 6.

2. Seifert surfaces and linking numbers

Let us consider a single line defect A in isolation and identify A with a smooth, oriented, space
curve, closed, simple (i.e. without self-intersections) and possibly knotted in S3 (R3 ∪∞).
We can think of A as the resulting intersection of two (or more) connected, compact, two-
dimensional surfaces in S3, so that A can be regarded as the locus from which these surfaces
originate. This concept can be straightforwardly extended to an N-component oriented link
L ⊂ S3, that is L = �iAi (i = 1, . . . , N), where � denotes disjoint union. Among the infinitely
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Figure 1. Examples of surfaces bounded by knots and links. (a) and (b): trefoil knot A
bounded by (a) a one-sided surface (like a Möbius band) and (b) a two-sided, oriented
Seifert surface [37]. (c) A Seifert surface bounded by a Hopf link of loop defects A1
and A2 obtained by direct simulation of the GPE governing BECs (Adapted figure with
permission from [24], Copyright 2017 by the American Physical Society).

many surfaces that may originate from L, let us consider those surfaces that are orientable (i.e.
bicollared) [38]:

Definition. A Seifert surface of a knot or link L is an orientable, compact manifold Σ ⊂ S3

with ∂Σ = L.

Note that a Seifert surface is not uniquely defined. Examples of such surfaces are shown in
figure 1. Since from a physical viewpoint defects are thought of as nodal lines of complex wave
functions and originators of wave fronts, we may regard such surfaces as equi-potential energy
surfaces given by isophases of complex wave functions (or isocons of equi-concentration for
chemical or biological systems).

For each defect line Ai ∈ L, we can define a tubular neighborhood (trivial normal bundle)
Ti ≈ S1 × D2 centered on Ai. For each i we introduce a second curve A′

i to be congruently
oriented with Ai and such that A′

i is a push-off of Ai on the boundary ∂Ti. The base curve Ai

and its push-off A′
i define a ribbon Ri ⊂ Ti such that ∂Ri = Ai ∪ A′

i (see figure 2). The collection
of push-offs {A′

i} (i = 1, . . . , N) gives the framing of L.
As mentioned in the introduction a line defect is characterized by the strength (circulation)

Γ = Γ(n) (n number of arms), that in ideal systems is conserved in time. Another physical
conserved quantity of ideal systems is kinetic helicity H, that for fluid flows measures the link-
ing degree between streamlines and vortex lines [39, 40]. A fundamental result of topological
fluid mechanics for single-armed (n = 1) defects establishes a relationship between helicity
and linking numbers, i.e.

Theorem 1 ([41, 42]). Let L be a physical link in ideal conditions. Then, the helicity
H = H(L) is given by

H =
∑

i

⎡
⎣Γ2

i Sli +
∑
i 
= j

ΓiΓ jLki j

⎤
⎦ (i, j = 1, . . . , N), (1)

where Sli = Sl(Ri) = Lk(Ai, A′
i) is the Călugăreanu–White self-linking number of Ri and

Lkij = Lk(Ai, Aj) is the Gauss linking number of Ai and Aj.

It is well-known that the self-linking number of the ribbon Ri is a topological invariant
of Ri and admits decomposition in terms of two global geometric quantities, the writhing
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Figure 2. Mathematical ribbon associated with a curve in space: ribbon Ri defined by
the base curve Ai and the push-off A′

i (red online) on ∂Ti.

number Wr of the base curve Ai and the total twist number Tw of the ribbon Ri, according to the
equation

Theorem 2 ([43, 44]).

Sl(Ri) = Wr(Ai) + Tw(Ri). (2)

3. Phase map and zero helicity of Seifert framed defects

For each Ti, ∂Ti ≈ S1
λi
× S1

μi
, where λi and μi denote respectively a longitude and a meridian

curve on ∂Ti with Lk(Ai,λi) = 0 and Lk(Ai, μi) = +1. ∂Ti is foliated by a family {λi} of
longitudinal curves, each parallel to A′

i. Given a point z ∈ ∂Ti, then z ∈ μiz = S1
μiz

a meridian
curve on ∂Ti. The point z lies on a curve A′

iz parallel to A′
i; A′

iz intersects S1
μiz

(the phase circle)
in the poloidal angle θz (figure 3). Define

φi : ∂Ti → S1 (z �→ θz);

each curve A′
iz is thus mapped to its poloidal angle θz, with φ−1

i (θz) = A′
iz. Let π1(S1) be the infi-

nite cyclic multiplicative group generated by the identity map ω : S1 → S1. Now Lk(Ai, A′
iz) =

SL(Ri) for all z. Let [φi|A′
i
], denote the homotopy class of the map φi restricted to A′

i. Then

[φi|A′
i
] = ωSl(Ri) for all z.

Definition. The phase map Φ : ∂X = ∪n
i=1∂Ti → S1 is defined by

Φ|∂Ti = φi : ∂Ti → S1. (3)

Suppose now that we have a Seifert surface Σ such that ∂Σ = L. For each Ai, suppose that
Σ ∩ Ti = Ri. So A′

i ⊂ Σ for all i. This is a Seifert framing for L. A Seifert framing is a zero-
framing if L consists of a single component. For each i, let Σ̄i = Σ− R̊i, where R̊i is the part
of Ri contained in the interior of Ti. So ∂Σ̄i = A′

i ∪
[
∪i 
= jA j

]
, and Ai ∩ Σ̄i = 0 for each i. Let

us consider the helicity H of the link L and take for simplicity Γi = 1 (i = 1, . . . , N).

Definition. For the link L = �iAi the individual helicity of Ai is

H(Ai) = Sli(Ri) +
∑
i 
= j

Lk(Ai, A j). (4)

We have

Theorem 3 (Zero helicity). If L has a Seifert framing, then H(Ai) = 0 for all
i = 1, . . . , N, and H(L) =

∑
i H(Ai) = 0.
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Figure 3. Reference axes on the tubular neighborhood of a space curve and base point.
Longitude λi and meridian μi (blue online) on the tubular boundary ∂Ti; the point z on
the push-off A′

iz (red online) is defined by the poloidal angle θz; here ∗ denotes the base
point on the phase circle S1

μiz
.

Proof. Denoting by 〈Ai, Σ̄i〉 the intersection number of Ai and Σ̄i, if L has a Seifert framing,
then we have

0 = 〈Ai, Σ̄i〉 = Lk(Ai, ∂Σ̄i) = Lk(Ai, A′
i) +

∑
i 
= j

Lk(Ai, A j)

= Sl(Ri) +
∑
i 
= j

Lk(Ai, A j) = H(Ai).

Hence, from (1) we have

H(L) =
∑

i

⎡
⎣Sli +

∑
i 
= j

Lki j

⎤
⎦ =

∑
i

⎡
⎣Sl(Ri) +

∑
i 
= j

Lk(Ai, A j)

⎤
⎦

= 0 + · · ·+ 0 = 0. �
This result is a sufficient condition for theorem 4 discussed below; for BZ reactions it

was heuristically put forward by Winfree & Strogatz in 1984 [45], and discussed in the fluid
mechanics context by Akhmetev & Ruzmaikin in 1992 [46], and computationally proven by
Salman [36].

3.1. Existence of Seifert framing

Given a framing for the link L, how can one be sure that we have a Seifert framing? In order
to prove that a given framing is a Seifert framing, we must find a Seifert surface Σ such that
∂Σ = L. We have

Theorem 4 (Seifert framing [47, 48]). The framing {Sl(Ri)}N
i=1 is a Seifert framing if

and only if

Sl(Ri) +
∑
i 
= j

Lk(Ai, A j) = 0 (i = 1, . . . , N). (5)

This theorem was announced in [47] with no proof given; a complete proof however appears
in the previously unpublished PhD thesis of one of us (Cruz–White [48]). An essential part of
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the proof, which is given here below, relies on obstruction theory [49]. This is a computational
tool used in homotopy theory to build maps from one topological space to another. For example,
suppose you have an n-simplex A and a given map f from ∂A to a target space B, and wish to
extend the given map across the entire simplex. The obstruction to extending this map is the
homotopy class [ f(∂A)] ∈ πn(B). An extension exists if [ f(∂A)] = 0. If we start with a map
to B defined on the (n − 1) skeleton of A and wish to extend it to a map on the n-skeleton of
A, the obstructions lie in πn(B). One can thus construct an n-cochain on A with coefficients in
πn(B), connecting the homotopy obstructions to cohomology theory.

Proof. The sufficient condition is given by the zero helicity theorem 3 above. For the nec-
essary condition let us consider the bounded link complement X. We wish to find a phase map
Φ : X → S1 such that if the point ∗ ∈ S1, then Φ−1(∗) = Σ and ∂Σ = ∪N

i=1A′
i. The prescribed

framing {Sl(Ri)}N
i=1 gives a smooth map Φ : ∂X → S1 such that [Φ|Ai] = ωSl(Ri) ∈ π1(S1)

(i = 1, . . . , N). We want to extend Φ to a smooth map Φ̃ : X → S1, that is

(6)

In order to prove that this extension of Φ exists, we use obstruction theory to find a continuous
extension which can be perturbed to get a smooth extension. Since the target space is a circle,
which has non-trivial homotopy in dimension one only, all the obstructions live in dimension
one. Let [X, S1] denote the set of homotopy classes of maps from X to S1. Since S1 is a K(π, 1)
space, then

[X, S1]
α−→

1−1
H1(X;Z) = Z

ω
, (7)

where α([F]) = [F∗(ω)] and F : X → S1 induces

F∗ : H1(S1;Z) → H1(X;Z), (8)

since H1(S1;Z) ∼= Z and ω : S1 → S1 is the identity map on the phase circle S1. Now
[Φ] ∈ [∂X, S1]; the inclusion map i : ∂X → X induces

i∗ : [X, S1] → [∂X, S1]. (9)

We want to find [Φ̃] ∈ [X, S1] such that i∗([Φ̃]) = [Φ]. We have the following commutative
diagram:

where the top long horizontal exact sequence is the cohomology exact sequence of the pair
(X, ∂X) (integer coefficients), while the bottom long horizontal exact sequence represents
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Figure 4. Three arms departing from a common origin. Seifert sheets Σ1, Σ2, Σ3
departing from the point ai ∈ Ai of the three-arm defect Ai; ni = 3.

the homology exact sequence of the pair (X, ∂X) (integer coefficients). The Pk’s (k = 0, 1, 2)
isomorphisms from cohomology to homology are due to Poincarè duality.

Let (A′
i) ∈ H1(∂X;Z) denote the homology class of the cycle A′

i for each i. Then
P1(α1([Φ])) =

∑N
i=1(A′

i); we have

i∗ : H1(∂X;Z) → H1(X;Z) ∼= Z
μ1
⊕ · · · ⊕ Z

μN
,

where {μi}N
i=1 are the meridian curves for each Ti (see figure 3 again). Now

i∗((A′
i)) =

N∑
j=1

Lk(Ai, A j) = Sl(Ri) +
∑
i 
= j

Lk(A′
i, A j)

= Sl(Ri) +
∑
i 
= j

Lk(Ai, A j),

(10)

since Lk(A′
i, Aj) = Lk(Ai, A j) (i 
= j) and the ribbon Ri gives an ambient isotopy from Ai to A′

i

in the complement of A j for all j 
= i. By assumption Sl(Ri) +
∑

i 
= j Lk(Ai, Aj) = 0 for all i,

1 � i � N, so that i∗((∂X)) =
∑N

i=1i∗((A′
i)) = [0, . . . , 0] ∈ H1(X,Z). Hence i∗ ◦ P1 ◦

α1([∂X]) = 0, and by exactness of the homology sequence there exists (β) ∈ H2(X, ∂X;Z)
such that ∂[(β)] = P1 ◦ α1([∂X]). Going back up the chain of isomorphisms we have
α−1 ◦ P−1((β)) = [Φ̃] ∈ [X, S1] and thus i∗([Φ̃]) = [Φ]. �

An immediate consequence of theorem 4 is that because of (5), when each of the individual
helicity of the components of a defect link is zero, then the link is Seifert framed.

4. Extension to multi-armed defects

Consider now an isophase surface Σ with nodal line (phase defect) L = �iAi, and suppose
that ni arms of Σ emanate from each Ai. Let X = R

3 − �iT̊i; X is the bounded complement
of the link L. Let Σ∗ = Σ ∩ X. Consider ai ∈ Ai and ({ai} × ∂D2) a meridian circle of ∂Ti;
({ai} × ∂D2) = ∂({ai} × D2). Σ∗ is a Seifert surface in X and Σ∗ ∩ ({ai} × ∂D2) is given
by ni points (figure 4). On ∂Ti choose a longitude λi ⊂ ∂Ti (Lk(Ai,λi) = 0) and a meridian
μi = ({ai} × ∂D2). Suppose that 〈Σ∗,λi〉 = mi points. If mi and ni are coprime integers, then
(Σ∗ ∩ ∂Ti) is a companion knot to Ai; if the greatest common divisor gcd(mi, ni) = qi > 1,
then (Σ∗ ∩ ∂Ti) is a companion link to Ai with qi components. Furthermore, if Ai is unknotted
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Figure 5. Seifert surface of three-armed defect; Ai is unknotted, mi = 〈λi,Σ
∗ ∩ Ti〉 =

Lk(Ai,Σ
∗ ∩ Ti) = 3 and ni = 2.

and gcd(mi, ni) = 1, then (Σ∗ ∩ ∂Ti) is a torus knot, and if gcd(mi, ni) > 1, then (Σ∗ ∩ ∂Ti) is
a torus link. Figure 5 shows the trefoil companion of the unknotted Ai, with ni = 2 and mi = 3.

Suppose that A∗
i = (Σ∗ ∩ ∂Ti). We call the isophase surface Σ a generalized Seifert surface

for the multi-armed defect link L = �Ai. In this case Σ∗ is a true Seifert surface (and a Seifert
framing) for the link L∗ = �A∗

i .

Theorem 5 (Generalized Seifert surface). A generalized Seifert surface for the multi-
armed link L = �Ai exists if and only if

niLk(Ai, A∗
i ) +

∑
i 
= j

nin jLk(Ai, A j) = 0 (11)

for any 1 � i � N.

Proof. The proof that the linking condition is sufficient is similar to the obstruction theory
proof of theorem 4. Here we show that it is necessary. For each i let T̃ i be a solid torus around Ai,
whose transverse discs are half the size of those of Ti. Let Ãi = (Σ ∩ ∂T̃i). Since Ãi ∩ Σ∗ = ∅,
then

0 = 〈Ãi,Σ
∗〉 = Lk(Ãi, ∂Σ

∗)

= Lk(Ãi, Ã∗
i ) +

∑
i 
= j

Lk(Ãi, A∗
j)

= niLk(Ai, A∗
i ) +

∑
i 
= j

nin jLk(Ai, A j) , (12)

since A∗
j is homologous in T j to n jAj for all j. �

5. Anti-parallel reconnection preserves Seifert framing and twist

Physical defects may change topology when phase surfaces re-organize and line defects recom-
bine [26, 50]. Under the assumption of orientation preserving, anti-parallel reconnection of
defect strands [51], we have:

Lemma 1 (Seifert framing conservation). Seifert framing is conserved by anti-
parallel reconnection.
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Figure 6. Reconnection of Seifert surfaces: Seifert framing (a) before and (b) after anti-
parallel reconnection.

Proof. This is an immediate consequence of the orientation preserving anti-parallel
reconnection extended to any push-off A′

i of Ai on the relative Seifert surface (see
figure 6). �

Suppose now that we have a link L0 with a single component, that is L0 = A1. Then A1

has Seifert framing if and only if H(A1) = 0. Suppose that L�

k represents any link in the finite
sequence produced by k anti-parallel reconnections for which L�

k → L�

k−1 → · · · → L�

0 = A1.

Theorem 6 (Zero helicity under topological cascade). H(L�

0 ) = 0 if and only if
H(L�

i ) = 0 (0 � i � k) and any L�

i (0 � i � k) has Seifert framing.

Proof. This is an immediate consequence of lemma 1 above. �

Consider now a two-component link L� of the sequence {L�

i } above; let L� = A1 � A2 be
the disjoint union of Seifert framed defects A1 and A2 and let A1#A2 denote their reconnected
sum. We have:

Theorem 7 (Total twist conservation). The total twist of two Seifert framed defects A1

and A2 is conserved under anti-parallel reconnection, that is Tw(R1) + Tw(R2) = Tw(R1#R2).

Proof. We know that writhe is conserved under anti-parallel reconnection, that is Wr(A1) +
Wr(A2) = Wr(A1#A2) [51]. If A1 and A2 are Seifert framed link components, we have

Sl(R1) = Wr(A1) + Tw(R1) = 0 , (13)

and

Sl(R2) = Wr(A2) + Tw(R2) = 0 . (14)

Since A1#A2 ∈ {L�

i }, then A1#A2 (of ribbon R1#R2) is also Seifert framed; hence

9



J. Phys. A: Math. Theor. 54 (2021) 295203 D W L Sumners et al

0 = Sl(R1#R2) = Wr(A1#A2) + Tw(R1#R2)

= [Wr(A1) + Wr(A2)] + Tw(R1#R2)

= [−Tw(R1) − Tw(R2)] + Tw(R1#R2) . (15)

So, we have

Tw(R1) + Tw(R2) = Tw(R1#R2) , (16)

which proves the theorem. �

6. Concluding remarks

In this paper we have proved that each of the individual helicities of the component of a defect
link are zero if and only if the link is Seifert framed (theorems 3 and 4). We have then extended
this result to multi-armed defects (theorem 5) and proved that under anti-parallel reconnection
the total twist of a defect remains conserved (theorem 6). The zero helicity theorem provides
topological conditions for the existence of potentially stable states in dynamical systems. As
shown by theorem 3 an N-component Seifert framed link L must satisfy the condition

H(L) =
∑

i

⎡
⎣Sli +

∑
i 
= j

Lki j

⎤
⎦ = 0. (17)

Since Lki j = Lk ji, the linking matrix

M =

⎡
⎢⎢⎣

Sl11 Lk12 . . . Lk1N

Lk12 Sl22 . . . Lk2N

. . . . . . . . . . . .
Lk1N Lk2N . . . SlNN

⎤
⎥⎥⎦ , (18)

is an N × N real, symmetric matrix. Because of (17) the row sums and column sums of M must
be zero. A multi-armed link has a similar linking matrix. Properties of this type of matrix are
intriguing, but very little explored [52]. Since the Spectral Theorem of linear algebra ensures
that M can be always transformed into a real diagonal form D, and (at least in principle) the
inverse D �→ M exists, the zero helicity theorem ensures that any Seifert framed system of
homologically unlinked defects represented by a non-zero diagonal matrix D cannot exist in
reality: this means, for example, that if at least one of the SLi is non-zero, then the ensemble
cannot exist simultaneously [53,54]. This situation has been tested and confirmed by numerical
experiments [26, 55] and theoretical arguments [32]. For defects whose helicity is defined to be
intrinsically zero [36, 40], theorem 4 provides a topological condition for Seifert framing that
can be regarded as an inherent physical property of the system. In this case recent work based on
energy considerations [34] demonstrates that superposition of global twist on a single defect in
isolation with initial Sl = 0 determines instability with consequential production of new defects
as manifestation of an Aharonov–Bohm effect. All this, and current work on new exploitation
of topological properties in material science [56] with possible extensions to non-orientable
surfaces [48, 57], offer new, interesting avenues for applications of topological techniques to
applied sciences.
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