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ABSTRACT. The helicity H associated with a knotted vortex filament is considered.
The filament is first constructed starting from a circular tube, in three stages involving
injection of (integer) twist, deformation and switching of crossings. This produces a vortex
tube in the form of an arbitrary knot K; each vortex line in the tube is a (trivial) satellite
of K, and the linking number of any pair of vortex lines in the tube is the same integer
n. It is shown that in these circumstances the helicity is given by H = nx? where & is the
circulation associated with the tube. This result is discussed in relation to earlier works,
in particular the work of CXlugireanu (1959, 1961) which establishes that, for a twisted
ribbon with axis C the number n is the sum of three ingredients:

H 1
7 =n=W(O)+T(0)+ (a0

where W(C) is the writhing number and 7/(C) is the total torsion. The quantity [AO)c
represents the net angle of rotation of the spanwise vector on the ribbon relative to the
Frenet triad in one passage round C. Both 7(C) and [A®]c¢ are discontinuous in defor-
mations that take C through an inflexion point. The generic behaviour in such passage
through an inflexion point is analysed and clarified in §6.

1. Introduction

Let u(x,t) be the velocity field in an inviscid incompressible fluid, evolving
under the Euler equations, and let w(x,t) = V x u be the corresponding
vorticity field. Let S be any closed orientable surface moving with the fluid
on which w - n = 0. Then it is well-known (Moffatt, 1969) that the helicity
integral

'H:/vu-wdv (1)
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Fig. 1. Linking of oriented vortex tubes.

where V is the volume inside &, is an invariant under this Euler evolution,
this invariance being associated with the fact that the vortex lines are frozen
in the fluid and the topology of the vorticity field is therefore conserved.

The topological interpretation is most transparent for the simple situation
in which w = 0 except in two linked vortex filaments of vanishingly small
cross-sections and of circulations k3, K2; then, provided each vortex tube is
unknotted and the vorticity field has no internal twist within each tube, it
is easily shown that

H = 2N K1K; (2)

where NN is the Gauss (linking) number of the axes C;, C3 of the tubes,
positive or negative according as the orientation of the linkage is right-
handed or left-handed (for examples, see Fig. 1).

This interpretation has been extended by Arnol’d (1974) to situations in
which linked vortex lines are not closed curves but wind around each other
infinitely often. The integral (1) is still invariant in this situation and has
been described by Arnol’d as the “asymptotic Hopf invariant”.

For a single knotted vortex filament, the situation is not so simple. If
the axis of the tube is in the form of a knot K, then each vortex line is
(if closed) a satellite of K, and the helicity invariant may be expected to
bear the imprint of K in the limit as the tube cross-section shrinks to zero.
However there is now an unavoidable twist of the field w within the tube,
partly associated with torsion of the axis C of the tube, and evaluation of H
presents consequential difficulties.
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Fig. 2. Alternating knot (overcrossings alternate with undercrossings) with 9 cross-
ings, 5 positive and 4 negative (at a positive crossing, the overstrand must be rotated
anticlockwise to come into coincidence with the understrand with arrows pointing
the same way). Switching of two positive crossings converts this to the unknot.

It has been conjectured (Moffatt, 1981) that H must be asymptotically
identifiable with the invariant of Cdlugdreanu (1959, 1961) and this is indeed
implicit in later works (e.g. Berger & Field, 1984) in which the helicity of
a knotted vortex tube (or equivalently magnetic flux tube) is expressed as
the sum of writhe and twist components. However a direct evaluation of H
for a knotted vortex filament has never been given. We aim to provide this
in the present contribution.

2. Construction of a knotted vortex tube of prescribed helicity

We recall first the construction of a knotted vortex tube described by Moffatt
(1990). Let K be an arbitrary (tame) knot, and suppose that we view it in
standard plane projection with a finite number of crossings, each of which is
either positive or negative (for an example, see Fig. 2). By a finite number
of crossing “switches”, K’ may be converted to the unknot, which may be
continuously deformed to a circle Cy. By reversing these steps, Co may be
reconverted to K.

Now let T be a tubular neighbourhood of Cy, and let wq be a vorticity
field in Tp, uniform over each (small) cross-section of Tj, each vortex line
being a circle parallel to Cy. Let & be the circulation of the vortex tube. The
helicity of wy is zero. We may inject helicity Ho = hx? into this vorticity field
by Dehn surgery: cut the tube at some section, twist through an angle 2rh,
and reconnect (Fig. 3). If A is an integer no (as we shall suppose), then each
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Fig. 3. Dehn surgery (cut, twist, reconnect) on a circular vortex tube.

w line is a closed curve which closes on itsclf after one passage around T (in
knot terminology, it has winding number 1). Now convert Cy (carrying Tp
with it) to the knot K by the steps indicated above. Mg is conserved during
deformation but changes by an amount +2x? with each switch creating a

positive or negative crossing (Fig. 4). llence the helicity of the knotted tube
becomes

H = (no 4+ 2N4 — 2N_)x?* = nk?, (3)

say, where Ny are (respectively) the numbers of positive and negative switches
used to create . Thus, by this construction, H/x? is an integer.

Note the special choice ng = —2(Ny — N_) which makes % = 0. In this
situation, each w-line is still a replica of I so that the topology of the w-field
is decidedly non-trivial. Ilowever the linking number of each pair of w-lines
is zero (this does not necessarily mean that they are unlinked! — see the
example of Fig. 1c).

3. Helicity and the self-linking number of a framed knot

The number n in (3) is in fact the linking number of any pair of w-lines in
the knotted tube filament. This may be proved as follows.

Let us divide the tube up into m “sub-tubes” each with the same cir-
culation (flux of vorticity) x/m. Suppose that the linking number of cach
pair of vortex lines is IV; this is then also the linking number of each pair of
sub-tubes.

I[ H is the total helicity, then the helicity associated with the vorticity in
a sub-tube is

Hen = H/m2 4)
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switching loop

Fig. 4. Switching a negative crossing to become a positive crossing; this is equivalent
to the insertion of a “switching loop” which cancels the field of the understrand
below the crossing and recreates it above the crossing.This corresponds to increasing

the helicity of the knot by 2x2. Similarly the reverse switch changes the helicity by
-2k,

(since helicity is a quadratic functional of vorticity). H, may be thought of
as the “self-helicity” of a sub-tube T, associated with the linkage of vortex
lines within T},.

The total helicity H is the sum of these self-helicities plus the sum of the
interactive helicities (cf. eq. 2) arising [rom linkage of flux tubes, i.e.

H=mHm+QZNK,'Kj (5)
7

with k; = k/m (i = 1,2,...,m). llence

K 2
H=%+2N%m(m— 1)(;) (6)
H = N&2, (7)

a result that is independent of the degree m of subdivision of the tube.
Ilence, comparing with (3), N = n as asserted.

Any two vortex lines C; and C in the tube are the boundaries of a ribbon
Ry2 contained within the tube. A frame of reference (e, ny2, €1 X ny3) may be
constructed on this ribbon, where e is the tangent vector to C; (a function
of arc-length s; on C;), and nj is the spanwise vector on Ry from C; to
C; (also a function of s;1). Choice of such a frame constitutes a “framing” of
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Fig. 5. The three Reidemcister moves (Kauffman, p. 9, 1987).
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the knot J. The number n may then be described (Pohl, 1968) as the self-
linking number of the framed knot. The sell-linking number has no meaning
unless a frame is specified.

4. Helicity and Reidemeister’s first move

One of the classical results of knot theory is that two knots K and K’ are
isotopic (i.e. one may be continuously deformed into the other) if and only
if this can be achieved by a succession of Reidemeister moves (Fig. 5) act-
ing on (any) plane projection of K (or LA”). A distinction is made between
“ambient isotopy” which allows moves of types I, II and III, and “regular
isotopy” which allows only moves of types II and III. The description “am-
bient isotopic” is synonymous (for knots) with “topologically equivalent”
(Kauffman, p. 9, 1987).

If we consider the Reidemeister moves applied to a vortex filament, then
we can think of these as being localised deformations of the vorticity field
that conserve global helicity. There is no difliculty whatsoever in relation to
the moves II and III in this respect. There is however a subtlety in relation
to move I, as may be seen from consideration of figure 6 which represents the
twisting of a loop through an angle 27, thus converting a negative crossing
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Fig. 6. A right-handed twist of the loop through 2w (equivalent to two type-I Rei-
demeister moves) converts a negative crossing to a positive crossing.

to a positive crossing. If the same cffect were achieved by a crossing switch
as described in §2 above, then the helicity would increase by 2x2. Since
the Reidemeister twisting move conserves helicity, this increase must be
compensated by an equal decrease —2x? arising from the twist of w-lines
within the tube, i.e. a combination of switching and Dehn surgery is needed
to maintain helicity:

2 X Reidemeister move I = switch (— — +) + Dehn surgery (—47) (8)

The essence of this equivalence may be appreciated by playing with a belt
or a paper ribbon!

5. Helicity and the C&lugireanu invariant

Now let C be the central axis of the vortex tube (itself a vortex line); let s be
the arc-length from a point O of C, and suppose that the curvature c(s) is
everywhere positive on C (i.e. there are no points of inflexion). Let (e, n, b)
be the orthogonal triad of unit vectors (e = tangent vector, n = principal
normal, b = binormal) which satisfy the Frenet-Serret equations

de dn db
25 = M Ty e + b, 55 = ~Th; (9)

where 7(s) is the torsion of C.

If x = x(s) is a point on C, then a neighbouring curve C’ may be defined
by x’ = x(s) + en(s) where ¢ is a small positive parameter. The linking
number of C and C’ is given by Gauss’s formula

G(C,C) = ﬁﬁﬁ’ dx x dx' - (x — x') (10)

[x — x’[3
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and this is of course an integer. Cdlugireanu (1959) considered the limit of
this integral as € — 0. One (obvious) contribution in the limit is what is
known (TFuller, 1971) as the writhing number of C:

1 dx x dx’ - (x — x'
IV(C):aiji x|x—-)£?|c3 ), | (11)

There is however a second contribution to the limit arising from pairs of
points x, X’ such that |x — x'| = O(¢). Cilugdreanu showed that this second
contribution is given by

1
T(C) = o ﬁ 7(s) ds (12)
i.e. the total torsion divided by 27, and therefore that
lin}] G, =W({C)+T(C) (13)

is an invariant under distortions of C which do not introduce any inflezion
point. This is a very severe restriction, because as will be shown in the
following section it excludes twisting deformations, i.e. Reidemeister moves
of type L.

6. Generic behaviour associated with inflexion points

At an inflexion point s, on a curve x = x(s) (where s is arc-length), de/ds =
d?*x/ds? = 0, so that near s = s,

1
e(s)=e.+ -2-(8 —sc) el +... (14)
and
1 "
x(s) = xc+ (s — sc)ec + 6(8 — s )%l +... (15)
Moreover e/ is perpendicular to e, since
(en e) 1 -d_z_( 2) =0 16
s=35: d82 e 3=3c_ * ( )

Choosing origin at the inflexion point (x. = 0, s = 0), and axes Ozyz
with Oz parallel to e. and Oz parallel to €/, the form of the curve near the
inflexion is

x(s) = (s, 0, as®) (17)

where a = Lle!|, i.e. y = 0, z = az3. Without loss of generality we may
take @ = 1. We consider a time-dependent twisted cubic curve
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C: x(st)= s—gts,ts,s (18)

which passes through the plane inflexional configuration (17) at time ¢t = 0
(Fig. 7). We shall suppose that || and |s| are small, and we calculate the
torsion 7(s,t) to leading order near ¢t = s = 0. Iirst note that

e(s,t) = g—: = (1 — 21252, 2ts, 3s%) - (19)
and that
el = 1+ 0(s") (20)

so that, neglecting terms of order s, e(s, ) is indeed the unit tangent vector
near s = 0.

We now have

0

a—j = (- 4t2s, 2t, 6s) ~ (0, 2¢, 65) (21)
so that the curvature is

(s, t) = %3 ~ 212 + 95%)% (22)

near t = s = 0. As expected, ¢ vanishes at s = 0, t = 0, but there is no
inflexion point when [t| # 0; thus C(t) contains an inflexion point at s = 0
at the single instant ¢t = 0. The principal normal is

n(s,t) = %%— =+ 932)"%(0, t, 3s) (23)

and the binormal is then, to leading order,

b(s,t) = e x n = (&2 + 952)"%(0, —3s, ). (24)
Irom the third Frenet-Serret equation db/ds = —7n, we now easily find
that to leading order near t = s = 0,
3t
7(s,t) = 7199 (25)

This result (see Fig. 8) reveals the nature of the singularity of T at t = s = 0;
indeed the total torsion between s = —sg and s = 450 for ¢ # 0 is

% % 3t 3s
ds = T 2 i )
j T(s,t)ds 2/0 7105 ds = 2 tan ( : ) (26)

—30
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inflexion point
l=s=0

Fig. 7. The twisted cubic (18) for —1 < s < 1 and for various values of {. The curve
contains an inflexion point at s = 0 when ¢ = 0.

This jumps from —m to 4= as ¢ increases through zero, irrespective of the
value of sg.

This type of behaviour was recognised by Cilugireanu (1961) who devised
a particular example of a closed curve deforming through an inflexional
configuration. However, Cilugireanu misleadingly refers to “a discontinuity
of 7 at the point of inflexion!, whereas in fact it is the integral with respect
to arc-length of (s, ) that is dicontinuous (by an amount 2r) at ¢ = 0. This
discontinuity is just the amount expected for a Reidemeister move I, by the
argument of §4.

Since W(C) is continuous and 7/(C) is discontinuous for such distortions,
the sum is no longer invariant when distortions through an inflexion point
take place. However, the situation is rectified by {framing the curve as in §3
and by including the total angle of twist [A@]¢ of the spanwise vector from
C to C’ relative to the Frenet vectors (n,b) in one passage round C. The
“modified” Cilugireanu invariant is then

g =W(C)+ T(C) + %[AG]C (27)

! CXlugfreanu’s paper is in French; he writes “...la torsion passe nécessairement par
un point de discontinuité ...” (CXlug¥reanu, 1961, p. 616).
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Fig. 8. The torsion function 7(s,1) as given by (25) for various values of ¢.

and we write it in this way to emphasise that it is none other than the
helicity invariant divided by x?. When C contains an inflexion point, 7(C)
and 5-[AO]c are both indeterminate. In deformation through a configura-
tion containing an inflexion point, both 7(C) and 3-[A®]c are discontinuous
but by equal and opposite amount so that 7(C) + 7[A®]¢ is continuous;
we may then adopt the common limit (as ¢ — {. from above or below) to
give meaning to 7(C) + 5-[AO]¢ at the moment of discontinuity.

Of course all these subtleties are avoided if we simply adopt the helicity
H = nk? of the (framed) vortex tube as the fundamental invariant which is
insensitive to the presence or absence of inflexion points!

7. Summary and discussion

We have shown that, if the vortex lines in a knotted vortex filament are
twisted in such a way that each vortex line is a closed curve which closes
after one passage around the tube, and cach pair of vortex lines in the tube
has linking number 7, then the helicity of the vorticity field is given by

H= [ u-wdV = nx? (28)
v

where x is the circulation associated with the tube. The integer n is an
invariant under frozen field distorsion of the tube, and is identified with the
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Calugdreanu (1961) invariant:
1
n=W(QC)+T(C)+ ﬂ[A@]c (29)

where the writhing number W(C) and the total torsion 7(C) are defined by
eqs. (11) and (12). The angle [AO]¢ represents the total angle of rotation of
a neighbouring curve C’ (which we here take to be a vortex line) relative to
the Frenet pair (n,b) in one passage around the tube; .",l—r[AO]c is an integer
and so therefore is W(C) + 7(C).

If C is deformed continuously, then it may pass through configurations
containing one or more inflexion points. When C contains an inflexion point
(or an odd number of inflexion points), the torsion is singular. This be-
haviour is analysed in §6 and it is shown that (generically) 7(C) jumps
discontinuously through +1 as C passes through the inflexional configura-
tion. By virtue of the invariance of #, there is then a compensating jump of
F2m in [AO]c. This behaviour is associated with the classical Reidemeister
move of type I.

Célugdreanu’s proof of the result (29) is long and complicated. It should
be possible to derive the result directly from consideration of the limiting
form of the helicity integral. We hope to present such a derivation in a future
paper.
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