Detecting structural complexity:
from visiometrics to genomics and
brain research

Renzo L. Ricca

Abstract. From visual inspection of complex phenomena to modern vi-
siometrics, the quest for relating aspects of structural and morphological
complexity to hidden physical and biological laws has accompanied progress
in science ever since its origin. By using concepts and methods borrowed
from differential and integral geometry, geometric and algebraic topology,
and information from dynamical system analysis, there is now an unprece-
dented chance to develop new powerful diagnostic tools to detect and analyze
complexity from both observational and computational data, relating this
complexity to fundamental properties of the system. In this paper we briefly
review some of the most recent developments and results in the field. We give
some examples, taken from studies on vortex entanglement, topological com-
plexity of magnetic fields, DNA knots, by concluding with some comments
on morphological analysis of structures present as far afield as in cosmology
and brain research.

1 Complex structures in nature

This paper presents a rather brief overview of the progress made so far in what
we may call structural complezity analysis of physical and biological systems.
As we shall see, this relies on the mathematical study of aspects associated
with such systems, that are eminently morphological in character, by estab-
lishing possible relationships between these aspects and fundamental physical
properties of such systems. In this sense, structural complexity analysis aims
at relating fundamental physical aspects of a complex system with key mathe-
matical descriptors of the morphological complexity that the system exhibits.

At all scales nature shows some degree of organization. On a macro-scale,
from the cosmic distribution of mass and energy observed in the filamentary
structures present in our Universe [15], to the complex network of plasma
loops flaring up in the solar corona [6]. On a human scale, self-organized
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structures are present on a very wide spectrum, fluid flows being perhaps
the best prototypes [34]: from snow crystals to cloud formation, from froth
and bubbles to eddies, vortices and tornados, sheets of flames, vapor jets,
and so on. Similarly on a much smaller scale: polymers in chemical physics
(13], human DNA, highly packed in a tiny cell volume [7], or the intricate
neuronal network, that wires up our nerve system [14]. Self-organization and
co-operative behavior are indeed what ultimately make us living organisms!
Self-organization of structures, constituted by mass concentration, plasma
particles, fluid molecules, grains, crystals, chemical compounds or living cells,
seems indeed to share generic features, inherently associated with their own
very existence [4, 24].

Structural organization is just one way to identify such a universal prop-
erty, and whatever hidden mechanism is in place to produce it, uncovering
possible relations between generic properties of structural complexity and
physical information is clearly of great importance [19]. Progress in this direc-
tion gives us new ways to correlate localization and occurrence of apparently
distinct physical and mathematical properties, that may reveal an unexpected
new order of things, perhaps at a more fundamental level. Indeed, progress
in understanding and detecting levels of complexity of the actual physical
system might bring in a new paradigmatic order in the complexity of the
mathematical structures that are behind it; and this, in turn, might mean
new ways of interpreting relationships between mathematical structures on
one hand, and the physical world, on the other.

Before embarking on more specific questions, it is perhaps convenient to
explain the general strategy. Let us start with some common definitions of
physical “structures”: in general these will be defined by some space-time
localization and coherency of the constituent physical property, be it a scalar,
vector or tensor field. Mass, temperature, magnetic field, vorticity, molecular

Fig. 1. Structural complexity is naturally displayed in this digital image of a three-
difnensional network of retina astrocytes (courtesy of H. Mansour and T. Chan-
Ling, Retinal Biology Laboratory, U. Sydney; Bioscapes 1st Prize, 2005)
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groups, electric currents are, for instance, all possible candidates. What really
should matter here is:

e to attain high localization in space; and
e to preserve this localization on some time-scale.

Filaments, flux tubes, hexagonal patterns, sheets or spherical volumes pro-
vide the geometric support for some of the examples given above. The state
of organization and the degree of order present in a network of such physical
structures defines then structural complexity ([26]; see Fig. 1). Our strategy
will be to develop and use concepts borrowed from the realm of mathematical
sciences, to study fundamental aspects of structural complexity and to draw
relationships between this complexity and the physical properties of the sys-
tem. To do this we need to identify and develop useful mathematical tools.
By focussing on aspects of morphological complexity, we intend to leave aside
statistical methods, based on information theory and spatial statistics [23],
to concentrate on geometric, topological and algebraic information.

In the sections below we shall outline some of the progress made in recent
years, rooted in the old-fashioned visual inspection of complex phenomena
(§2), to land on current visiometric works (§3). We shall then appeal to some
of the current developments in geometric and topological methods (§4) to
present new results on applications to vortex dynamics, magnetic fields, DNA
genomics and cosmology (§5). An outlook on future developments is presented
in §6, speculating on possible applications to ecological and social networks
as well as aspects of brain research. Conclusions are finally drawn in §7.

2 A visual approach to structural complexity

From its very origin science has relied on direct visual inspection of complex
phenomena. From ancient natural philosophers to modern experimentalists,
our eyes and brain are powerful tools of investigation that have forged the
progress of science ever since; eyes and memory providing a record, and our
brain an amazingly efficient powerhouse for synthesis and elaboration of in-
formation. The meticulously accurate drawings of Leonardo da Vinci are
notoriously a masterpiece of both artistic geniality and scientific rigorous in-
vestigation of nature. His famous Water Studies [12], for instance, exemplify
our (his!) quest for unveiling the mysteries of nature, through detailed sketch-
ing of complex flow patterns: these, being indeed visual aids of investigation,
were “visual renderings” ante litteram.

This approach continued uninterrupted up to the modern days, til con-
temporary digital imaging or computational visualization from either obser-
vational data (as in cosmology, biology and ethology) or direct numerical sim-
ulations of governing equations (as in engineering, meteorology and oceanog-
raphy). Huge data sets (obtained from satellite missions or genetics labora-
tories) are being accumulated at an ever faster rate. There is however a lack
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Fig. 2. Examples of visual rendering of (left) enhanced streamlines associated with
vortex rolls in a sextant of volume (adapted from Kitauchi et al., RIMS, U. Kyoto &
Natnl. Inst. Fusion Sci., Nagoya; Phys. Today cover, 12, 1996), and (right) magnetic
fields originating from simulated active regions of sun spots (adapted from Abbett
et al., Space Science Laboratory, U. California at Berkeley, 2008)

of diagnostic tools for such a wealth of information. In research areas more
closely related to the mathematical sciences, such as magnetohydrodynam-
ics, aerodynamics and plasma physics, elaborate diagnostic toolkits for the
analysis of complex fluid flow visualizations (see Fig. 2) have been developed.

3 From visiometrics to complexity analysis

Advanced visiometrics [35] rely indeed on mathematical measures of struc-
tural complexity that are at the heart of this novel approach. By exploiting
progress made on vector and tensor field analysis of structural classification
and stability of dynamical systems [1, 18], flow visualizations can now render
three-dimensional complex patterns by various techniques, such as fiber or
field-line (stream-, path- or time-line) tracing, arrow plotting, iso-surface and
volume rendering. By identifying location and type of critical points, where
field lines converge or diverge (such as nodes, foci, centers, saddles, etc.), a
feature-based image tensor field is obtained, whose geometric and topological
properties are then fully analyzed [17].

From tensor analysis we extract information on eigenvalues and eigenvec-
tors, that can be used to determine anisotropy indices [9, 36] to quantify the
degree of isotropy present in the simulation of a physical process (a turbulent
flow, a pathogen diffusion, etc.). Eigenvalue analysis is used to distinguish
filament-dominated regions from regions where sheets are present. All this is
of course a by-product of numerical integration of the governing equations.
Bt in many cases raw data are simply provided by direct recording of nat-
ural or experimental observations. Once the data are visualized, we are in
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Fig. 3. From direct numerical simulations, a sub-domain is extracted and analyzed
by methods of structural complexity analysis

a situation similar to that of Leonardo’s Water Studies: it is more specifi-
cally in this context that morphological measures of structural complexity
analysis are fully exploited ([21, 25]; see Fig. 3). A theoretical framework
based on concepts borrowed from differential and integral geometry, and al-
gebraic and geometric topology is usefully applied and possibly complemented
by information from dynamical systems analysis, i) to describe and classify
complex morphologies; ii) to study possible relationships between complexity
and physical properties; and also iii) to understand and predict energy lo-
calization and transfer. Possible applications include the development of new
diagnostic and visiometric tools and the implementation of real-time analysis
of dynamical and biological processes.

4 Geometric, topological and algebraic measures

Geometric information is used to quantify shape. For space curves, for exam-
ple, length, curvature, torsion, writhing and inflexional states, are all impor-
tant information. Likewise, the integral measures of surfaces and volumes,
together with mean and Gaussian curvature. Information obtained from pro-
jected diagrams of the original geometric objects can also be useful; in the
case of curves we obtain planar graphs made by contour lines (edges) joined
at nodal points (vertices) (see diagram on the left of Fig. 3). Depending on
the number of arcs incident at the nodal point, we define a degree of multi-
plicity that can be implemented in a “shaking algorithm” to simplify graph
complexity and analysis. Rotation indices are used to weight and sign the
area of the sub-regions (faces) of the graph [27, 29]. Shapefinders [30] are
used to determine characteristic shapes, going from thin filaments and tubes
to sheets and pancakes (see §5.4 and Fig. 9 below).

Topological information is used to qualify shape. The knot theory provides
information on knot and link complexity by measures of minimum crossing
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number, genus, bridge number, knot polynomial, braid index [33]. Other in-
formation, coming from linking number, unknotting number, number of prime
factors, etc., are useful to complement the description of physical phenomena
(linking number information providing a measure for fluid helicity, unknot-
ting number for recombination processes, etc.). For surfaces, orientability,

1
Un-signed crossing: Signed crossing:

Fig. 4. Information on unsigned and signed crossing numbers can be used to quan-
tify morphological complexity and geometric aspects, such as writhing of filaments

mm——

rotation index = number of rotations

Fig. 5. Algebraic information from dynamical system analysis is provided, for
example, by rotation indices associated with vector or tensor field analysis



Detecting structural complexity 173

genus, Betti number and Euler characteristic are all important properties
that, as we shall mention in §5.4, help to determine form factors.

The total number of apparent intersections between filament strands in
space, averaged over all directions, provides an algebraic measure of com-
plexity and is a good detector of structural complexity [5]. If orientation is
physically inherited, then the axial curves identified by the filaments are ori-
ented too and, according to standard convention, an algebraic sign is assigned
to each apparent intersection (see Fig. 4). We can then repeat the algebraic
counting of the total number of apparent signed intersections, and we have
an algebraic interpretation of total writhing. If, in place of physical filament
tangles, we refer to abstract gaze patterns in visual science [16], we can then
relate the complexity of human eye movements to visual perception and in-
formation. Finally, in the case of dynamical systems, rotation indices (see
Fig. 5) are readily available from vector or tensor field analysis, and these
help to classify sub-domains of flow patterns by topology-based methods [17].

5 Examples of applications in mathematical physics,
biology, cosmology

Structural complexity analysis finds useful applications in many fields of cur-
rent research. Here we briefly report on some recent results and current devel-
opments in particular areas of mathematical physics, biology and cosmology,
to account for some of the progress made so far.

5.1 Energy-complexity relations for vortex tangles

Structural complexity analysis is applied to investigate relationships between
dynamical and energy aspects of fluid flows and complexity measures. Numer-
ical tests [5] based on the production of vortex entanglement due to the action
of a background super-posed helical flow on seed vortex rings (see Fig. 6),
show that a power-law correspondence between complexity, measured by the
average crossing number C, and the kinetic energy F of the system holds true
independently from the originating turbulent state. For a tangle 7 of vortex
lines x; (i = 1,2,...), the average crossing number is obtained by computing
the sum of all apparent crossings at sites €,, made by pairs of vortex lines,
averaged over all directions, by extending the counting to the whole tangle;

this is defined by
C= Z { Z 5?) 1 (1}

{xixsYeT rExifEx;

where # denotes disjoint union of all apparent intersections of curve strands,
including self-crossings. Kinetic energy, on the other hand, is given by

1
B=; [ fupav, @)
JV(T)
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Fig. 6. Vortex tangle produced by interaction and evolution of a superfluid back-
ground flow (adapted from [5])

where V(T') is the total volume of the vortex tangle, and u is fluid velocity.
During evolution, entanglement grows and these two quantities change in
time ¢, according to the following relation

C(t) x [E@)* . (3)

This result has been confirmed by several tests under different initial condi-
tions and for different evolutions.

5.2 Topological bounds on magnetic energy of complex fields

There has been considerable progress towards foundational issues in topolog-
ical field theory, including aspects of topological complexity. In the early '90s
works by Berger, Freedman & He, Moffatt (see the collection of papers edited
by Ricca, [25]) showed that in ideal magnetohydrodynamics the magnetic en-
ergy M of a knotted flux tube K, of constant flux ¢ and volume V = V(K),
is bounded from below by knot complexity. In particular, if magnetic energy
is given by

e 2
m= [ o BV, (4)

then we have
Mmin 2 f(@, V) Cmin (5)

where f(-) denotes a given functional relationship, and ¢y, is the topologi-
cal (i.e., minimum) number of crossings of knot type K. Another important
quantity, related to linking, is the magnetic helicity H, given by

H= A-BdV, (6)
V(K)

wliere B = V x A (with V- A = 0). For zero-framed knots, by relying on pre-
vious results by Arnold, Freedman & He and Moffatt, Ricca [28] has proved
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that the following inequalities hold true:

16 \'/* 16\ "/*
M 2 (W) |H| 1 Mmin 2 (Hf) ¢2 Cmin - (7)

Moreover, in the presence of dissipation, magnetic fields reconnect and topo-
logical complexity is bound to change according to the following inequality

H(t) < 26°C(¢) | (8)

hence providing an upper bound to the amount of magnetic helicity and
average linking of the magnetic system.

5.3 DNA knots and links

In recent years there has been growing confidence that at various levels of
investigation morphological and structural properties of DNA conformation
are not only visibly present and physically relevant, but also key to influ-
ence biological functions as well [10]. In this direction a great deal of work
is carried out on DNA knots and links, in relation to fundamental biological
aspects, including enzymatic action, protein coding and packing [33]. Fig. 7,
for example, shows the relative distribution of specific DNA knot types ex-
tracted from the phage capsid of bacteriophage P4. This kind of research is
a typical example of combination of experimental laboratory work and data
analysis based on pure topological information.

The topological complexity of DNA catenanes, on the other hand, changes
by the enzymatic actions performed by the topoisomerase. Here, local pro-
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Fig. 7. Identification of DNA knot types by electrophoretic separation during mi-
gration in the gel (adapted from [3])
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Fig. 8. After performing twist moves on the unknot (Kj), a reconnection on a
local site gives the Hopf link K;; after a second twist move, followed by another
reconnection, we obtain the four-crossing knot K> (adapted from [20])

cesses of “cut-and-connect”, performed locally by these actions on DNA
strands to do, or to undo, DNA knots and links, may be modeled by applying
the tangle theory (see Fig. 8, and the recent review by [20]). An interesting
implementation of this technique [11] has led, for instance, to the development
of dedicated software (such as Bob Scharein’s KnotPlot) for computational
simulations.

5.4 Complexity analysis of cosmological data

One of the most challenging problems in cosmology is the formation and
distribution of the large-scale structure of the Universe. In recent years the
problem of analyzing the wealth of information based on observational data
of galaxy distribution has received new impetus, thanks to the application of
morphological detectors (Minkowski functionals), coming from integral geom-
etry [22]. In low dimensions, these actually reduce to the standard measures
of volume V, bounding surface A, global mean curvature H and Euler char-
acteristic x, the latter providing eminently topological information on the
distribution set. A combined used of these measures has become a powerful
tool to detect morphological complexity associated with a point distribution
set. By identifying galaxy distribution with the corresponding distribution of
the galaxies’ centers of mass, these measures find application to determine
geometric and topological properties of cosmic clusters (for example, by using
“germ-grain” models).

A morphological characterization of structures is obtained by the use of
“shapefinders”, to detect degrees of filamentarity F' and planarity P, from
spheroidal distributions of mass and energy. By defining length, width and
thickness respectively by

K H

A
4 = = T:——
I W= 1 (9)

:41er1
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Fig. 9. Blaschke diagram applied to morphological analysis of disordered medium.

Inset illustrates a case of computational simulation of structural growth of Voronoi
model with 100 seeds on a 200% lattice (adapted from [2])

we have [30]
_L-W P_W—T
L+ W’ S W+T’

used to determine the morphological characteristics in a wide range of appli-
cations: structures that are predominantly filament-like being characterized
by F'~ 1 and P < 1, and sheet-like structures being characterized by P = 1
and F' < 1. In general, for convex bodies we have P > 0 and F < 1 (for a
sphere P = F' = 0), with plots of F' versus P denoting Blaschke diagrams of
form factors. An example is shown in Fig. 9, where dominant morphological
characteristics are evidenced by the curve in the (F, P) plane. As we see, by
changing parameters one can go from high filamentarity (tube-like shapes)
to high planarity (sheet-like shapes or pancakes), passing through spheroidal
shapes (bulkiness). These measures can be related to morphological detectors
associated with dynamical systems either based on data extracted from field
line tracing [29] or, for example, based on eigenvalue analysis of corresponding
fluid flows [35].

(10)

6 Outlook: morphological complexity for brain research

With increasing storage capability and computational power there will be
an ever greater demand for effective diagnostic tools to analyze and detect
properties of structural complexity in relation to physical and biological prop-
erties. Applications of complexity measures like average crossing number and
shapefinders find already new applications in the morphological analysis of
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Fig. 10. Simulation of “swelling” growth of a complex surface: the initial, rela-
tively simple morphology (here simply measured by the average crossing number)
increases with the simulated inflationary process of growing complexity (collabo-

rative work in progress; adapted from P. Pieranski, Laboratory of Computational
Physics and Semiconductors, Poznan University of Technology, 2007)

such disparate areas as the study of disordered media (including particle-
based structures, amorphous micro-structures, cellular and foam-like struc-
tures; see, for example, [2] and Fig. 9 above), isotropic turbulence or magnetic
field generation [37]. Work is in progress on possible future applications of
these methodologies to the new frontier of neural networks and brain research.
For instance, work done in collaboration with this author may include anal-
ysis of possible relationships between structural complexity measures and
generic features associated with the growth of a bounding surface to model
early stages of brain development (see Fig. 10). Other possible applications
may well include studies of generic features common to nerve and blood ves-
sel wiring in the human body (8], complex networking in the world-wide-web,
the predator-prey chain system or the social system, that, contrary to intu-
ition, seem to show a remarkable common degree of self-organized dynamics
on all length scales [32].

7 Conclusions

In this paper we have shown how work on structural complexity, and in partic-
ular analysis on morphological aspects based on geometric, topological and
g’*algebraic information, may offer powerful tools to investigate relationships
between complexity features and energy localization or functional activity.
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Examples of recent applications include vortex tangle analysis in fluid dy-
namics, energy bounds for magnetic braids in solar physics, DNA knots and
links in ultrastructural biology, morphological complexity analysis in astro-
physics, cosmology and disordered media. In the future, likely applications
will include the study of the development of neural systems, brain formation,
and complex networks such as the world-wide-web.

These studies will certainly benefit from novel diagnostic tools based on
structural complexity analysis and possibly new morphological detectors.
This approach alone, however, cannot be sufficient, if not supplemented by
fundamental work on constitutive laws and governing equations. Hence, if
structural complexity analysis may represent a preliminary and necessary
step towards a more comprehensive understanding of complex phenomena, it
is actually in disclosing the relationships between morphological aspects and
functional issues that this approach proves most useful. It is in this direction
that old and new mathematical concepts will find their best use.
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