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Abstract. Preliminary results on twisting and folding mechanisms of supercoiled fila-
ments are presented. We examine competing kinematic models for single and multiple coil -
formation, starting from a plane circle and we evaluate the effects of curvature on writhing
and packing rates. The analysis is performed by using a simple thin filament model under
conservation of linking number. Time-dependent evolutions of epicycloid curves are used
to perform transition from twist to writhe. These results may find useful applications
in modelling natural phenomena, from magnetic field dynamos in astrophysical flows to
compaction mechanisms of DNA in cell biology.

1 Introduction

The efficiency of twist and fold of circular filaments is analyzed by this preliminary study,
examining different models of epicycloid type of evolution in terms of curvature effects on
writhing and packing rates. These results are of fundamental importance for understanding
the effects of geometric features in the morphological change of filamentary structures in small
volumes.

Examples of filamentary structures are present at a wide variety of scales in nature; these
include vortex filaments in turbulent flows, magnetic flux-tubes in magneto-hydrodynamics
and DNA molecules in cell biology. A common feature of these structures is their tendency to
re-distribute internal energy, of kinetic, magnetic or elastic origin, by changing filament shape
(Ricca, 1995). In first approximation these filaments can be modelled by thin tubes of circular
cross-section. In many istances this process consists of a pure geometric re-arrangement of the
filament axis in the ambient space without change of topology. In the case of a closed filament
in isolation, for instance, conservation of the linking number Lk implies the invariance of the
sum of two geometric quantities, the writhing number Wr and the total twist Tw, according
to the well-known formula (Calugareanu, 1961; White, 1969)

Lk=Wr+Tuw. (1)
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The writhing number Wr is a measure of the amount of coiling of the filament axis, and the
total twist Tw measures the winding of the constituent fibers around the filament axis. Under
conservation of topology, we have Wr + Tw = constant, with possible conversion of Wr and
Tw during evolution, through a continuous change of curvature and torsion of the filament axis.
These aspects are often mutually functional and important in nature, as in the case of the human
DNA, where a molecule a few centimeters long can be stored in a micron-sized scroll of protein.
This packing process depends crucially on the localized actions that induce the twisting and
folding of the filament in the ambient space, often governed by energy minimization principles
and guide the morphological evolution of filamentary structures to form highly complex systems
(Ricca, 2005).

In this paper we want to address questions related to the geometry of writhing and coiling,
in terms of single and multiple coil formation, and relative packing rate. To do this we consider
a closed filament F given by a thin tube of length L and uniform circular cross-section of area
A = ma?, with L > a. F is thought to be made of a bundle of infinitesimal helical fibers,
distributed inside the tube and wound around the tube axis C with twist. We also assume that
the filament be inextensible, so that L = constant. C is given by a smooth (at least C?), simple
(i.e. non-self-intersecting), closed curve X = X(£) in IR?, where £ € [0,27] is a parameter
on the curve. The geometry of the axis is prescribed by the curvature ¢ = ¢(£) and torsion
7 = 7(€) of X through the Frenet-Serret formulae.

The total amount of coiling is given by the normalized total curvature K, given by

— 1 !
K= 5o §e@IXEld . )

where prime denotes derivative with respect to £&. A measure of folding is provided by the
writhing number Wr (Fuller, 1971), given by

[dX x dX*] - [X — X*]
k= 4wf£ fg X-XPF ®)

where X = X(€) and X* = X(£*) are two points on the axis ({¢,&*} € [0, 27]).
The total winding of the infinitesimal fibers around C is given by total twist Tw; denoting
by Q2 = Q(§) the angular twist rate, we have

— 1 !
Tw= 5 § UKt @

which is related to the geometry of the filament axis through the decomposition (see, for
example, Moffatt & Ricca, 1992)

w=5r $EOIXOldE+ 3Ol =T+N | )

where the first term in the r.h.s. of (5) is the normalized total torsion 7 and the second term
is the normalized intrinsic twist A of the fibers around C.

2 Kinematic models of coil formation

By comparing different kinematic models based on the time-evolution of epicycloid type of
curves, we investigate different mechanisms of coil formation through filament writhing and
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Figure 1: Side and top view of (a) single coil formation and (b) three coil formation generated
by egs. (6) from an epicycloid type of curve (witha=c=+1,b=d= —1). In (a) m =1 and
n = 2 whereas in (b) m = 1 and n = 4. In both cases the writhing number Wr grows with
time from 0 to the asymptotic value Wry. = 1.

folding. For this, we consider a family of time-dependent curves X = X(&,¢) given by an
extension to three-dimensions of well-known planar curves; we propose the following general
set of governing equations

x = acos (m&) + bt cos (nf)
X=X(1) : y = csin (mé€) + dtsin (n€) (6)
z = tsin (§)

where a,b,c,d take the value +1 or —1, n > m > 0, with n, m integers and ¢ is time. For
simplicity, we consider the simplest linear dependence on time, but more general non-linear
relations are likely to take place in nature.

The values +1 for a, b, ¢, d exhaust in fact all possible cases (up to a scale factor). For given
values of the parameters a, b, ¢, d (see Table 1), eqs. (6) describe the time evolution of closed

Generatriz curve | a b é d | Wr-range
Epicycloid +1 | £1(£1]+1 (—1,0]
Epicycloid +1|F1|(£1]| -1 [0,1]

Table 1: Types of generatrix curve for different values of parameters, for m = 1 and n = 2+4r,
where r € IN. Note that for these curves we have an upper bound on the writhing number
given by |Wr|max = 1. For n = 2+ 2r, where € IN is odd, we have the same curves, with
relative range of writhing number exchanged.
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curves that originate (at ¢ = 0) from a plane circle of length L = 27 (since a? = ¢* = 1),
and evolve from epicycloid generatrices to form singly or multiply coiled configurations. For
simplicity we want to consider inextensible curves only, so that we must normalize X = X(§, t)
by the length function

o0 [[@-@-@« o

Note that eq. (7) is, in general, not invertible; hence X = X(&,t) cannot be parametrized by
arc-length.

Single coil from planar circle: Figure 1 shows the evolution of X from a circular configuration
to a three-dimensional curve with one single coil; this is described by egs. (6) for m = 1 and
n = 2. During evolution topology is conserved, so that Lk remains constant. For simplicity in
the following we shall take Lk = 1. Since the original configuration is circular, egs. (1) and (3)
give Wr = 0 and Tw = 1 at t = 0. As ¢ increases, the filament will form one single coil through
the conversion of twist to writhe, according to the conservation of (1), and asymptotically (as
t — oo) Tw will be completely converted to Wr (hence, in the limit, Tw =0, Wr = 1).

Multiple coils formation: Figure 1(b) shows the prototype evolutions given by eqs. (6) in the
case of three coils. We obtain 2k — 1 coils for m = 1 and n = 2k (k € IN\0). Table 1 shows
the epicicloid type of generatrix curve according to the value of the parameters and Wr-range
during evolution. Due to the opposite sign of the coils, the writhing number remains bounded
between 0 and 1, with Wr — 1 as t — oo. Notice also that |Wr|n.x = 1 persists regardless
the number of coils produced, for any n = 2k. For n odd we have the simultaneous production
and collision of an even number of coils, generated symmetrically along the curve; so we shall
exclude these values of n.

Multiple coil formation from multiple coverings of plane circle: Figure 2 show the prototype
evolutions for (a) two and (b) three coil formation given by eqs. (6) for any m such that
m =n — 1. In this case we obtain more elaborate curves generated by pseudo-epicycloid. The
first m — 1 coils are instantly produced from m coverings of a plane circle, while the remaining
coil is generated during the full evolution of the curve. In the transient the pseudo-epicycloids

generate one loop, while the writhing number grows from 0 to the asymptotic value of m (see
Table 2).

3  Writhing rates

We compare the kinematics considered so far in terms of relative writhing rates. Typical
behaviours are shown in Figure 3. Top row diagrams refer to (a) the epicycloids of Figure 1(a)

Generatriz curve | a | b | ¢ | d | Wr-range
Pseudo-epicycloid | +1 | £1 | £1 [ +1 [ [-m,0]
Pseudo-epicycloid | +1 | F1 | £1 | —1 [0, m]

Table 2: Case m = n — 1: types of generatrix curve for different values of parameters; now we
have |W7r|max = m. The range of the writhing number shown is attained for any n € IN.
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Figure 2: Side and top view of (a) two and (b) three coil formation given by eqs. (6) from
pseudo-epicycloid generatrix (witha =c=+1,b=d = —1). In (a) m = 2 and n = 3, the first
coil is produced instantly from a double covering of the plane circle while the second coil is
generated at later time; the writhing number grows to attain the asymptotic value Wiy, = 2.
In (b) m = 3 and n = 4, the first two coils are produced instantly from a triple covering of
the plane circle, while the third coil is generated at later time; the writhing number grows to
attain the asymptotic value Wrpax = 3.

and 1(b), respectively: for these cases we have lim; ., Wr = 1. The comparison between top
diagrams show that the change in writhing of the epicycloid evolution with n = 4 is faster
than that of epicycloid with n = 2; this is due to the fact that in the second case three coils
(instead of the one formed in the first case) are produced instantaneously. Note that the bound
Wrmax = 1 holds true for any number of coils generated, as shown in Table 1. Because of the
conservation of Lk = 1 (cf. eq. 1), this implies also a bound on the total twist T'w.

Similarly for the bottom diagrams of Figure 3. In the case (a) we have m = 2, so that
Wr jumps suddenly to 1 as the first coil forms, tending then asymptotically to the limit value
Wrmax = 2 with the production of the second coil. In the case (b) we have m = 3, so that Wr
jumps suddenly to 2 as the first two coils form, tending then asymptotically to the limit value
W rmax = 3 with the production of the third coil. In general, the first m — 1 coils are instantly
produced from the m coverings of the plane circle and so Wr jumps instantaneously from 0 to
m — 1 as the curve evolves. When m = n — 1 the writhing number has an upper bound given
by Wrpax = m.

4 Inflexional deformation

As we saw from the previous sections, coiling originates from local writhing of the filament
axis to form a loop region. This mechanism consists of a passage through an inflexional state
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Figure 3: Writhing number Wr plotted against time. Top row diagrams refer to the epicycloids
of Figure 1(a) and (b), respectively. Bottom row diagrams refer to the pseudo-epicycloid
evolutions of Figure 2(a) and (b), respectively.

(defined by vanishing curvature and local change of concavity of the curve), as it was originally
recognized by Cilugdreanu (1961) and analyzed in detail by Moffatt and Ricca (1992). The
appearance of an inflexional state is a generic geometric feature, independent of the kinematics
considered, and therefore it occurs during any coil formation. Moffatt and Ricca (1992) showed
that at the point of inflexion the torsion is singular, but the singularity is integrable. The
contribution from the integral of the total torsion through the inflexional state involves a jump
[7] = 1 in total torsion, that is compensated by an equal and opposite jump in the intrinsic
twist AV, so that the twist number Tw (cfr. eq. 5) remains a smooth function of £ and ¢.

In the case of the curve of Figure 1(a), since the initial conditions are given by 7 = 0 and
N =1, the initial total twist Tw is only given by pure intrinsic twist. Passage through inflexion
occurs at £ = 0, t = 0.25 and leads to the complete conversion of one full intrinsic twist to total
torsion. With reference to egs. (6), if N'(0) is the number of full turns of twist present initially,
and N is the final number of coils produced, then N'(0) — N = N(o0) is the number of intrinsic
twists present in F in the limit ¢ — oo, since in this limit total torsion is zero again. Work in
progress (Maggioni & Ricca, 2006) shows that this istantaneous conversion of intrinsic twist to
total torsion has important consequences on the energetics of the system.

5 Compactibility and packing rate

In many physical situations filamentary structures need to be highly packed in small volumes.
On macroscopic scales, for instance in astrophysical flows, the compaction of magnetic fields
in small regions leads naturally to an intensification of the average field, a process that can be
associated with dynamo action (for example, through a stretch-twist-fold process, as proposed
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by Moffatt & Proctor, 1985; see also Childress & Gilbert, 1995). On the other hand, on
microscopic scales, the human DNA is compacted in chromosomes by a factor of about 10.000,
and it may be confined into a scroll of protein with packing ratio given by D/L = O(1077),
where D and L denote typical sizes of the proteic region and DNA length (Calladine & Drew,
1992).

We like to compare the kinematics considered here to quantify compactibility and packing
rate in the light of possible applications. In the case of the generation of a single coil, at t =0
we have L = 2mRy = 2m; when the coil is fully formed, the filament centreline will tend, on
average, to a double covering of a circle of radius R. Since L is kept constant, the average radius
of the new curve will, in the limit ¢ — oo, be half of the original, that in our case corresponds
to R = 1/2. In general, if N is the total number of coils produced, then we have:

1

L=2‘?T=(N+1)2?TR — R=N—+1 (8)

In general, then, if N = N(t) is the number of coils produced per unit time, the packing rate
p = p(t) will be given by p(t) = [N(t) + 1].

6 Conclusions

In this preliminary report we have analyzed competing kinematic models of coiling formation,
based on epicycloid evolutions and we have shown how efficiency of coiling and compaction
mechanisms depend on geometric quantities such as writhing, folding and inflexional configu-
rations associated with exchange of twist to writhe. We have seen that some of the kinematics
considered have Wy« = 1, regardless the number of coils formed, and we have underlined that
this fact implies a bound on the total twist Tw converted. In effect, this will imply a bound on
the torsional energy converted into bending energy. We have also estimated the efficiency of
filament packing into small volumes. Work is in progress to apply these results to investigate
further localized coiling for DNA modelling (Ricca & Maggioni, 2006) and magnetic dynamo
actions.
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