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INTRODUCTION

Interest in the study of invariant quantities is generally motivated by the need to
interpret and to understand their meaning and their fundamental role in the theory. The
invariants we shall consider in this paper emerge in two contexts. In the context of the localized
induction approximation (LIA) for the motion of an inextensible vortex filament in a perfect
fluid flow, we shall deal with certain conserved quantities that emerge from the Betchov-
Da Rios equations; the polynomial invariants for the related nonlinear Schrédinger equation
(NLSE) are calculated employing the recurrence formula of Zakharov and Shabat (1974); these
quantities are constants of the motion for the vortex as long as self-intersection does not occur
and long-distance effects are neglected. Some of them are then interpreted in terms of kinetic
energy, momentum, angular momentum, “pseudo-helicity,” and some inequalities between
physical and global geometrical properties are stated. In the context of the Euler equations,
given that the topology of the vortex structure is conserved and the helicity invariant is the
natural measure of the topological complexity of the field (Moffatt, 1969; Arnol’d, 1974), we
comment further on this role of helicity; moreover, by associating an “energy spectrum” with
any knot or link present in the fluid, the lowest ground-state enstrophy is interpreted as an
even more powerful invariant for evaluating the knot or link complexity of the field structure.

INVARIANTS OF THE BETCHOV-DA RIOS EQUATIONS
We consider a vortex filament F in a perfect fluid flow, with the vorticity vector w

everywhere parallel to the tangent t on the curve. In the context of the local induction
approximation (LIA) the motion of the vortex is governed by the simple equation

V =¢(s,t)b (1)
where V is the Eulerian velocity of F, c(s,t) is the local curvature, a function of arclength s

and time ¢, and b the binormal (Da Rios, 1906; Arms and Hama, 1965). In the LIA context,

The Global Geomerry of Turbulence
Edited by J. Jiménez, Plenum Press, New York, 1991 257



the mean diameter of the vortex core-size is assumed negligible compared with the local radius
of curvature and self-interactions of different parts of the filament are believed not to occur.
The equation (1) led Da Rios and Betchov (1965), independently, to derive the equations
which govern the time derivative of the curvature ¢ and the torsion ¥ of F

é=—(c¥) =V
. "o a2\ (2)
J= (-c—-—c—i?-) +ce

where dots and primes stand for partial derivatives with respect to ¢ and s, respectively.
Hasimoto (1972) by the remarkable transformation

YP(s,t) = c(s,t) exp [i f d(s,t) ds] P(s,t) e C (3)
reduced the set (2) to the nonlinear Schrédinger equation (NLSE)

18y 8% 1 .,

Tor = om TP )
which in one dimension is completely integrable (Zakharov and Shabat, 1972). This means
that we have an infinite set of quantities which are constants of the motion. Among these,
there is a countable family of so-called ‘polynomial conservation laws’; they have the form
of an integral with respect to s of a polynomial expression in terms of the function (s, )
and its derivatives with respect to s. Using the Hasimoto transformation (3), we can employ
the recurrence formula given by Zakharov and Shabat to calculate this family of invariants in
terms of ¢ and ¢. The formula is

f“+1=q% (';'fu)"‘ Z f.ffk H f“.:f“(s,t)e'ﬂ n=12,... (5)
jt+k=n
where
a=3i%  hi=glel =5

and the associated invariants are then

2)"1, = f fn(s,t) ds = constant =12 000 (6)

The first five conserved quantities are

26T = %fhbr‘ ds = %fc’ ds (7a)
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(2i)’1, = -% jf(ﬂ’;#’:' - ¢9)ds = —%t’%c’ﬂ ds (7b)

1 c! ” 2,92
(21’)313 = .4_}(:— - " - I’ ) ds (TC)
(2i)'Z, = %f[ccm o i(%c‘ S L 21:0") 15] ds (7d)

l -
(2i)°Zs = %f[c’ (% «-c") - gcc:"2 +c" 4 (0‘ - %cﬂ + t?") -24? (2cc" + c”)] ds. (Te)

where 9 is the complex conjugate of 1. We recognise the first two integrals (7a, 7b) as
invariants discovered by Betchov; note that the total torsion of the filament

Ir= }(Ms (8)

is also an invariant of equations (2) (Keener, 1990 — note added in proof).

INTERPRETATION OF SOME SCALAR AND VECTOR INVARIANTS OF THE
BETCHOV-DA RIOS EQUATIONS

Suppose for simplicity that the vorticity is uniform across the core of the vortex, i.e.
w = wpt, and let

T'=wpdg , dV = Agds = Lda
Wo

where Ag is the mean cross-sectional area. Apart from numerical coefficients, the integral I;
can be related to the Eulerian kinetic energy T' associated with the motion of the filament
simply applying LIA (eq. 1):

_1 2.y 1T g
T= 2LV dy = 2wnfc ds = constant. (9)

The interpretation of 7, is more subtle: it is asymptotically related to the helicity of F; in
this context we can call it “pseudo-helicity” and write

H= / V.curlVdy = —2L f c¢*9 ds = constant (10)
i Wo

[hint: from the definition, apply LIA and consider the “abnormality” b-curlb of unit binormals
to the filament; the surface swept out by the vortex filament minimises the Hamiltonian for
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the system (2) (Weatherburn, 1927, p. 197; Marris and Passman, 1969; Rasetti and Regge,
1975; Ricca, in preparation)]. The integrand of 73 can be recognised as the Lagrangian density
for the “lossless” NLSE, via the Hasimoto transformation (3).

Furthermore, the LIA implies that the total length L and the enstrophy § of F are

conserved. By the Schwarz integral inequality we can state the following constraints: the
helicity H has an upper bound, given by

H: < I?L ){ ¢* ds = constant. (11)

For an unknotted filament, the total curvature is bounded as follows

1/2
2r < fcds < (J.'.f«:2 d.s) = constant (12)

[hint: apply Fenchel theorem (do Carmo, 1976, p. 399)] and for a knotted filament, we have

1/2
ir < fcd.s < (L%c: ds) = constant (13)

[hint: apply Fary-Milnor theorem (do Carmo, 1976, p. 402)].

It is also possible to prove the conservation of two vector quantities which can be
interpreted as mémentum invariants; the linear momentum

=1]}{Audv=lrfm\x'da (14)
2 )5 2
and the angular momentum
P=%jXA(XAu)dV=%rj§xA(x;\x')da (15)
F

are constants of the motion [hint: use LIA and the “expansion theorem” for the vector triple
product]. The first of these last two results in particular (the conservation of the right-hand
side of (14)) was obtained by Arms and Hama (1965) but the interpretation given here is
believed to be new. These results imply that the localized induction approximation respects
conservation of both momentum and angular momentum.

TOPOLOGICAL INVARIANTS OF THE EULER EQUATIONS

Since, under evolution governed by the Euler equations, the vorticity field is frozen in
the fluid, the complete topology of the vorticity field is conserved. It is interesting to inquire
what is the complete set of topological invariants that characterise this topology. One subset
of invariants are the helicity invariants (Moreau, 1961; Moffatt, 1969), one such invariant
being defined for every closed surface within the fluid on which the normal component of
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vorticity is zero. The helicity of linked vortex tubes is directly related to the Gauss linking
number, the most basic topological invariant of two linked curves (see figure 1). However,
there exist simple linkages (e.g. the Whitehead link of figure 1c) for which the linking number
is zero; if an untwisted vortex tube of small cross-section is constructed around each of the
curves of figure lc, then the helicity of the resulting flow is zero, although the topology is
obviously non-trivial. The question then arises as to whether there is any other topological
invariant of the vorticity field which may provide a measure of the topological complexity
of the structure. A possible approach to the problem, which is related to the fundamental
problem of the topological classification of knots and links in IR? has been described by Moffatt
(1990). Here, we simply indicate the essential features of this approach, in the context of the
Euler equations.

F1 + }-1 Fa
X -
O“KD
(WA
2 Q.‘Fz F '
Fa F1

(2) (b) (c)

Fig. 1. Examples of (a) unlinked and (b), (c) linked filaments 73 and F3.
The linking number £ is respectively: (a) L1z = 0; (b) £12 = -1
(¢) £12 = 0 (Whitehead link) (see for example Maxwell, 1873, vol.
II, p. 41).

Suppose first that we have an arbitrary closed knotted curve C, and let us construct
around C a vortex tube of circulation x, and small cross-section. We suppose that, within this
tube, each vortex lines runs essentially parallel to the axis C. There is a certain arbitrariness
here as regards the twist of the vorticity field around the axis of the tube: for we can imagine
cutting the tube at any section, twisting it about the axis through an arbitrary angle, and
reconnecting. As shown in Moffatt (1990), the effect of this is to change the helicity of the
associated flow by an amount hx? where 2xh is the angle of twist. Whatever the initial helicity
may have been, there is always a twist which can be introduced in this way, and which makes
the resulting helicity zero. Let us suppose that this condition is satisfied, although it is by no
means the only possibility. This assumption pins down the topology of the vorticity field and
relates it unambiguously to the topology of the knot C.

Under any volume-preserving diffeomorphism, the topology of the vorticity field is
preserved, but the enstrophy of the associated flow is not conserved. It is obvious that there
can be no theoretical upper bound on the enstrophy, because natural evolution governed by
the Euler equations is generally such as to increase enstrophy, and this increase can proceed
without limit when the effects of viscosity are ignored; this type of behaviour is well known,
if not fully understood, for turbulent flow. '

However, it is relevant to ask whether, given the topology of the vorticity field, there
is any lower bound to the enstrophy, under the action of volume-preserving diffeomorphisms.
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If we were to integrate the Euler equations backwards in time, it might be natural in general to
expect a decrease of enstrophy, and the question is how far can this decrease proceed, or
equivalently what is the minimum level of enstrophy from which flow with given vorticity
topology may evolve?

It was shown by simple application of the Schwarz inequality (Moffatt, 1969, section 4) that
when the helicity of a flow is non-zero, the enstrophy under Euler evolution (whether forwards
or backwards in time) is bounded below, essentially because indefinite contraction of any vortex
ring necessarily leads to ultimate extension of any vortex ring with which it is linked. This is
a simple and illuminating example of the way that a topological barrier implies the existence of
a lower bound. As shown by Freedman (1988) even when the helicity is zero (as for the
Whitehead link topology) the enstrophy has a lower bound, under the action of volume-preserving
diffeomorphisms, provided only that the topology of the vorticity field is non-trivial. This
important result provides a crucial link between formal topological techniques and fluid
mechanics.

A technique by which the lower bound may be attained was developed by Moffatt (1985),
and is applied in the context of knots and links in Moffatt (1990). The technique is more easily
comprehended in terms of the magnetic field in a perfectly conducting fluid rather than in terms
of vorticity, but the end result is the same. In terms of the magnetic field, the volume-preserving
diffeomorphism is seen as the effect of an incompressible flow which is driven by the Lorentz force
associated with the magnetic field. This construction is such as to dissipate magnetic energy (the
analogue of enstrophy) and to drive the magnetic field towards a magnetostatic equilibrium state,
and in this state, the magnetic energy is minimal with respect to arbitrary volume-preserving
frozen-field distortions. The flow that takes the initial magnetic field to this final equilibrium
state defines also a limit volume-preserving mapping x — X which relates the final position of
fluid particles to their initial position.

If we now think in terms of vorticity rather than magnetic field, the same mapping
converts the vorticity field (via the usual Cauchy transformation w;(X) = w;o(x)9X;/dz;) to
a state of minimum enstrophy.

For the case in which the vorticity is confined to a single closed knotted vortex tube,
as described above, the minimum enstrophy must, on dimensional grounds, have the form

1
Q=ms*V"3 (16)

where V is the volume of the vortex tube and s the circulation (both conserved under volume-
preserving frozen-field distortions). The coefficient m depends only on the topology of the
tube, i.e. on the topology of the knot C around which it is constructed. This dimensionless
positive real number is evidently a topological invariant of the knot.

The situation becomes a little more complicated when we consider linked vortex tubes.
If each tube has the same circulation x and the same volume V, then the minimum enstrophy
state is characterised by just the two dimensionless parameters x and V, and by the topology

of the linkage, and so the minimum enstrophy again has the form mx?V~3 where the real
number m is a topological invariant characteristic of the linkage. If however the circulations
are different, then the conclusion is not so simple. For two tubes of circulation x;, k2 exhibiting
an arbitrary linkage (e.g. the Whitehead linkage) each tube having volume V, the enstrophy,
on dimensional grounds, has the form -

1
1= Emg,-n,-xjv_i (17)

where m;; is a real symmetric positive-definite matrix. Under frozen-field deformation, this
matrix varies, and, for given k1, k2, there is a unique minimising configuration. However, m;;
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in the minimum enstrophy state is a function of the ratio x; /k;. This may be seen explicitly
for the Whitehead link, for which my; is non-zero if k; is non-zero. However, if k3 is zero
(s0 that the second vortex tube vanishes), then mj; in the minimum enstrophy state is zero,
because the topology is trivial.

Many questions on the frontier between fluid mechanics and topology are raised by
considerations of this kind, and these present challenging problems for the future.

CONCLUDING REMARKS

Some comments need to be made in conclusion. Either in the LIA context or in
the context of the Euler equations, global geometrical considerations play a critical part.
In the LIA context the topology is not conserved; but the invariants are constants of the
motion for the isolated vortex filament as long as it does not interact with itself and the
long-distance effects are negligible; under these circumstances these invariants are consistent
with the assumed model. Some of these conserved quantities have been interpreted in terms
of kinetic energy, momentum, angular momentum, “pseudo-helicity,” and some inequalities
between physical and global geometrical properties have been stated. It is remarkable that
even under this approximation the momentum and the angular momentum are still conserved.

In the context of the Euler equations the topology is fully conserved. Helicity, being
the natural and simplest measure of topological complexity of a convected vector field, plays
a prominent role. Here, we can reasonably expect to have a wider family of invariants of such
a topological nature. Adopting the method of magnetic relaxation, which conserves vorticity
topology, a new type of invariant has been found; it has been interpreted as the minimum
enstrophy state for knotted vorteces and its nonzero value is due to the topological barrier in

the relaxed field.

Finally, we observe that this invariant should be computable, at least for reasonably
simple knots. Given the equation of the knot in parametric form x = x(s), it should
be straightforward to construct a knot field Bo(x) and then to implement the relaxation
procedure numerically. In the equilibrium end-state, delicate questions concerning tangential
discontinuities (i.e. vortex sheets or vortex gradient sheets) may arise. This means that
particular care has to be taken in the asymptotic stage of relaxation.
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