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Figure 3. A simple oscillator circuit.

circuit includes inductors and capacitors, the equations
become integro-differential, but Kirchhoff’s laws work
justas well, and they also handle nonlinear components
easily. The circuit of Figure 3, for instance, is an
example of the van der Pol oscillator. In this case, KCL
simply states that the currents through all three elements
are identical. KVL implies that Vj + V. — V. =0. The
constitutive relations for the capacitor and inductor are
I.=CdV,./dr and V| = L d];/dt, and the resistor in this
circuit is nonlinear: V, = —al; + b[l.3. Thus, KVL can
be rewritten as

dh 1

L— +

= Ef!cdf+a!,—blr3=0.

Other Applications

These ideas generalize beyond electronic circuit
analysis. Many other systems, ranging from vehicle
suspensions to social groups, can be described by
networks. Moreover, KVL and KCL are actually
instances of a more general set of laws. In the late
1950s and early 1960s, inspired by the realization
that the principles underlying KCL and Newton’s third
law were identical (summation of {forces, currents} at
a point is zero, respectively; both are manifestations
of the conservation of energy), researchers began
combining multi-port methods from a number of
engineering fields into a generalized engineering
domain with prototypical components (Paynter, 1961).
The basis of this generalized physical networks (GPN)
paradigm is that the behavior of an ideal two-terminal
element—the “component”—can be described by a
mathematical relationship between two dependent
variables: generalized flow and generalized effort,
where flow x effort = power. This pair of variables

KNOT THEORY

a b

Figure 4. (a) An electrical circuit that is mathematically
equivalent to (b) a mechanical circuit.

is different in each domain: (flow, effort) is (current,
voltage) in an electrical domain and (force, velocity) in
a mechanical domain. _

The GPN representation brings out similarities be-
tween components and properties in different domains.
Electrical resistors (v = i R) and mechanical dampers or
“dashpots” (v = f B) are analogous, as both dissipate
energy. Both of the networks in Figure 4, for example,
can be modeled by a series inertia-resistor-capacitor
GPN. Thus network (a) is an electronic RLC circuit
(like the van der Pol example of Figure 3), and net-
work (b) is a mechanical mass-spring-damper system
that has identical behavior. Similar analogies exist for
generalized inertia, capacitance, flow, and effort source
components for mechanical rotational, hydraulic, and
thermal domains (Karnopp et al., 1990, Sanford, 1965).
These correspondences and generalizations allow ap-
plications of KVL and KCL to mechanical structures
(buildings, vehicle suspensions, aircraft, etc.), which
can be modeled as interconnected networks of masses,
springs, and dashpots. This approximation gives an-
alytic insight into the vibrational modes of buildings
(important for earthquake protection) and of aircraft
(to keep engine frequencies from damaging wings).
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KLEIN-GORDON EQUATION

See Sine-Gordon equation

KNOT THEORY

A simple closed curve in three-dimensional space is a
knot; more precisely, if M denotes a closed orientable
three-manifold, then a smooth embedding of ' in M is
called a knot in M. A link in M is a finite collection of
disjoint knots, where each knot is a component of the
link. Knot theory deals with the study and application
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of mathematical properties of knots and links in
pure and applied sciences. As purely mathematical
objects, knots are studied for the purpose of classifying
three-dimensional surfaces according to the degree
of topological complexity, regardless of their specific
embedding and geometric properties (Figure 1). In
this sense, knot theory is part of topology. In recent
years, however, knot theory has embraced applications
in dynamical systems, stimulated by the challenging
difficulties associated with the study of physical knots
(Kauffman, 1995). In this context knots and links
are representatives of virtual and numerical objects
(given by dynamical flows, phase space trajectories, and
visiometric patterns), and are used to model tube-like
physical systems, such as vortex filaments, magnetic
loops, electric circuits, elastic cords, or even high-
energy strings. For physical knots, topological issues
and geometric and dynamical aspects are intimately
related, influencing each other in a complex fashion.
Virtual or numerical knots are studied in relation to the
generating algorithms and the probability of forming
knots, whereas the study of physical knots addresses
questions relating topology and physics, as in the case
of the topological quantum field theory (Atiyah, 1990)
and topological fluid mechanics (Arnol’d & Khesin,
1998; Ricca, 2001).

Mathematical Aspects

Let us introduce some basic mathematical concepts
(see, for example, Adams, 1994). A knot is said
to be oriented in M, if it is a smooth embedding
of an oriented curve. Two knots K and K’ are
said to be equivalent if there exists a smooth
orientation-preserving automorphism f : M — M such
that f(K)=K’'; in particular, if the knot K is
continuously deformed by f (preserving the curve
orientation) to the knot K’, then the two knots K and
K" are said to be equivalent by ambient isotopy, and the
isotopy class of K is represented by its knot type. Since
knot theory deals essentially with the properties of
knots and links up to isotopy, the knot parametrization,
as well as any other geometric information, is irrelevant.
Aknotdiagramof K is a plane projection with crossings
marked as under or over; among the infinitely many
diagrams representing the same knot K, the minimal
diagram is the diagram with a minimum number of
crossings. According to the type of crossing, it is
customary to assign to each crossing in the knot diagram
the value e =+ 1 or e =— 1, as shown in Figure 2:
by switching one crossing in the knot diagram from
positive to negative (or the other way round), we obtain
a different knot type, which is identical except for this
crossing. By switching all the crossings we obtain the
mirror image of the original knot. If the knot is isotopic
to its mirror image, then its knot type is said to be
achiral, otherwise it is chiral.
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Figure 1. Three examples of knot and link types: (a) the
six-crossing knot 63; (b) the two-component six-crossing link
62; (c) the three-com - ing link 73
3 ponent seven-crossing link 77.

A )

K K K,
Figure 2. Standard crossing notation and algebraic sign
convention for oriented strands: e(K_)=-—1; £(Kp)=0;
E(K+)=+]

A knot invariant is a quantity whose value does not
change when it is calculated for different isotopic knots.
There are many types of invariants of knots and links,
but the most common are of numerical or algebraic
nature. One of the most important is the genus g(K)
of the knot K: recall that closed orientable surfaces are
classified by genus, given by the number of handles
in a handle-body decomposition. The genus g(K) is
defined as the minimum genus over all orientable
surfaces S, which span an oriented knot K, where
dS = K. One of the simplest combinatorial invariants
of a knot is the minimum number of crossings of a
knot K in any projection, called the crossing number
¢(K). A fundamental invariant of links is the linking
number Lk(K|, K3), that measures the topological
linking between the knots K| and K3; this invariant,
discovered by Carl Friedrich Gauss in 1833, can be
easily calculated by the crossing sign convention of
Figure 2:

I
Lk(K1, K) =5 ) &, (1)

rekKnks

where ¢, = +1 and K| N K, denotes the total number
of crossings (not necessarily minimal) between K,
and K. Following the pioneering work of James W.
Alexander, who used a Laurent polynomial Ak (g) in
g to compute a polynomial invariant for the knot K by
using its projection on a plane, many other polynomial
invariants have been introduced; most notably the Jones
polynomial Vg (¢) in 112, defined by the following set
of axioms:

(i) Let K and K’ be two oriented knots (or links),
which are ambient isotopic. Then

Vi (1) = Vg (2). (2)
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(ii) If U is the unknotted loop (that is the unknot), then
Vu(t) = 1. (3)

(iii) If K4, K_, and Ko are three knots (links)
with diagrams that differ only as shown in the
neighborhood of a single crossing site for Ky and
K_ (see Figure 2), then the polynomial satisfies
the following skein relation

17 Wg () = tVk_(0) = ¢ = V2 V(1) . 4)

An important property of the Jones polynomial (which
is not shared by previous polynomials) is that it can
distinguish between a knot and its mirror image. Later
work has led to other polynomial invariants, namely, the
HOMFLY and Kauffman polynomials, and to a more
abstract approach to algebraic invariants (Vassiliev
invariants and Lie algebras). There are also invariants
of different nature: among these, we mention the
fundamental group m; (S3/K) of the knot complement
and its hyperbolic volume v(K). The classification
of knots and links has led to the important study of
braids: these are given by a set of n interlaced strings,
with ends defined on two parallel planes, placed at
some distance h apart. According to specific topological
characteristics, we may consider special types of knot
sub-families, such as torus knots, alternating knots,
two-bridge knots, tangles, and many others (see Hoste
et al., 1998).

Virfual Knots

Virtual knots arise from dynamical flows, generated
by the vector field of a specific ordinary differential
equation (Ghrist, 1997), in connection with phase-
space dynamics and statistical mechanical models
(Millett & Sumners, 1994) or, as recently done,
from application of ideas from the quantum field
theory with an appropriate Lagrangian. This latter
approach, originated in work by E. Witten in 1989,
has led to the creation of a new area, called the
topological quantum field theory, that has proven to
be extremely fruitful in providing new results on
invariants of low-dimensional manifolds. Soliton knots
are given by solutions to soliton equations for one-
dimensional systems: in this context there are intriguing
questions relating topological invariants, integrability,
and conservation laws. Virtual knots and links are
generated in visiometrics by numerical simulations: in
this case, smooth knots are replaced by polygonal knots,
where the number of segments (or sticks) is the result of
numerical discretization. Stimulating questions address
the minimum number of sticks of given length for
each knot type and the generation of knots and links
by minimal random walks. Other questions regard
charged knots: these are knots and links charged by
potentials that generate self-attraction or repulsion
on the knot strands (see Figure 3). Under volume-
preserving diffeomorphisms, the knot is led to relax by
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Figure 3. Examples where a topological barrier prevents further
relaxation under a volume-preserving diffeomorphism: (a) an
electrically charged trefoil knot is maximally extended by the
Coulomb repulsion forces to its minimum energy state; (b) a
magnetic link attains ground state energy by the action of the
Lorentz force on the magnetic volume.
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minimizing the knot energy (defined by an appropriate
functional), by shrinking or extending the length as far
as possible, depending on the potential, to attain an
ideal shape (Stasiak et al., 1998). Questions relating to
topology and geometry of ideal shapes, and uniqueness
of minimum energy states, pose challenging problems
at the crossroads of topology, differential geometry,
functional analysis, and numerical simulation.

Physical Knots

By physical knots we mean tube models, centered
around the knot K, with length L(K), tubular
neighborhood of radius r(K), and volume V(K). The
tube is filled by vector field lines, whose distribution
gives physical properties in terms, for example, of
elasticity, vorticity, or magnetic field. A wide variety
of filamentary systems present in nature at very
different scales can be modeled by physical knots: from
DNA molecules, polymer chains, vortex filaments, to
elastic cords, strings, and magnetic flux tubes. In fluid
systems, the action at a microscopic level of physical
processes, such as viscosity and resistivity, may imply
changes in knot topology by local recombination
of the knot strands (known as knot surgery) and
consequential rearrangement of energy distribution. In
elastic systems, the material breaking point and internal
critical twist are strongly influenced by knot strength
and rope length, the latter given by the ratio L/r. All
these systems are free to relax their internal energy
to states of equilibrium: lower bounds on equilibrium
energy for given measures of topological complexity
(based, for example, on crossing number information)
can be expressed by relationships of the kind

Emin = h(c, @, V., n), (5)

where Enin is the equilibrium energy and /h(-) gives
the relationship between physical quantities—such as
flux &, number of components n, knot volume V—
and topology, given here by the crossing number c.



KOLMOGOROV CASCADE

Understanding the interplay between topology and

energy localization and redistribution can be very

important in many fields of science and applications.
Renzo L. Ricca

See also Differential geometry; Dynamical systems;
Structural complexity; Topology
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KOCH CURVE

See Fractals

KOLMOGOROV CASCADE

The velocity fluctuations of a high Reynolds number
flow in a three-dimensional velocity field are typically
dispersed over all possible wavelengths of the system,
from the smallest scales, where viscosity dominates the
advection and dissipates the energy of fluid motion, to
the effective size of the system. This is not so bizarre:
our everyday experience tells us it is so. On the corner
of a city street, one might watch the fluttering and
whirling of a discarded tram ticket as it is swept by an
updraught, driven by localized thermal gradients from
traffic or air-conditioning units; later, on the television
news, one might see reports or predictions of storms on
the city or district scale, and a weather map with isobars
spanning whole continents. If you are a sailor you will
know how to sail, or not, the multi-scaled surface of
a turbulent ocean (Figure 1). The mechanism for this
dispersal is vortex stretching and tilting: a conservative
process whereby interactions between vorticily and
velocity gradients create smaller and smaller eddies
with amplified vorticity, until viscosity takes over
(Tennekes & Lumley, 1972; Chorin, 1994).

An alternative, crude but picturesque, description of
multi-scale turbulence was offered by the early 20th
century meteorologist Lewis Fry Richardson (1922)
in an evocative piece of doggerel: “big whirls have
little whirls that feed on their velocity, and little whirls
have lesser whirls and so on to viscosity.” Richardson’s
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Figure 1. Turbulent action on many different scales in a high
Reynolds number flow: woodcut print by Katsushika Hokusai
(1760-1849).

often-quoted rhyme is apparently a parody of Irish
satirist Jonathan Swift’s verse: “So, naturalists observe,
a flea—Has smaller fleas that on him prey—And
these have smaller still to bite’—And so proceed ad
infinitum.”

The statistics of the velocity fluctuation distribu-
tion in turbulent flows were quantified rather more
elegantly and rigorously by the mathematician An-
drei N. Kolmogorov (1941b), who derived the subse-
quently famous “—5/3 law” for the energy spectrum
of the intermediate scales, or inertial scale subrange,
of high Reynolds number flows which are ideally ho-
mogeneous (or statistically invariant under translation)
and isotropic (or statistically invariant under rotation
and reflection) in three velocity dimensions. Two thor-
ough, but different in style and emphasis, accounts of
Kolmogorov’s turbulence work are Monin & Yaglom
(1971) and Frisch (1995).

Kolmogorov's idea was that the velocity fluctuations
in the inertial subrange are independent of initial and
boundary conditions (i.e., they have no memory of the
effects of anisotropic excitation at smaller wave num-
bers). The turbulent motions in this subrange, therefore,
show universal statistics, and the flow is self-similar.
From this premise Kolmogorov proposed the first hy-
pothesis of similarity as: “For the locally isotropic tur-
bulence the [velocity fluctuation] distributions F, are
uniquely determined by the quantities v, the kinematic
viscosity, and ¢, the rate of average dispersion of energy
per unit mass [energy flux].” His second hypothesis of
similarity is: “For pulsations [velocity fluctuations] of
intermediate orders where the length scale is large com-
pared with the scale of the finest pulsations, whose en-
ergy is directly dispersed into heat due to viscosity, the
distribution laws F, are uniquely determined by F and
do not depend on v.”

Kolmogorov derived the form of the distribution or
energy spectrum, which we denote as £(k), where k
is the wave number given by k2 = k2 + k2 + k2, over
the inertial subrange simply by dimensional analysis.
By the first and second hypotheses, the spectrum must



