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Abstract We introduce and test measures of geometric and topological complexity to
quantify morphological aspects of a tangle of vortex filaments. The tangle is produced
by standard numerical simulation of superfluid turbulence in Helium II. Complexity
measures such as linking number, writhing number, average crossing number and
helicity are computed, and their relation to the energy of the fluid is investigated.

We found a complezity measure -
It really is quite a treasure -
For a vortezx entangled,
By methods new-fangled;
I'll explain if you have enough leisure.

1. Introduction

Complex systems of filaments occur frequently in nature. Examples
range from vortex structures to magnetic flux tubes to polymers, pro-
teins and DNA. We would like to relate the morphological complexity of
such systems with physical properties, such as energy. The aim of this
paper is twofold. First we introduce candidate measures of geometric
and topological complexity; secondly, we choose superfluid turbulence
as a convenient benchmark, compute these measures and compare them
to energy.

2. Vortex dynamics and superfluid turbulence

Superfluid turbulence (Barenghi 2001) consists of a disordered, ap-
parently random tangle of vortex filaments. This state of turbulence
is particularly simple if compared to traditional hydrodynamics turbu-
lence. Firstly, the superfluid is inviscid. Secondly, all vortex filaments
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have the same circulation I' (the quantum of circulation). Thirdly, the
vortex core radius is so small (=~ 10~8c¢m) and the filaments are so long
that the classical theory of thin-core vortex filaments applies well. Un-
like what happens in classical turbulence, in which eddies can be of any
size and strength, superfluid vorticity is always geometrically well de-
fined (it is the location where both the real and the imaginary parts
of the quantum mechanical wave function vanish). All these features
make superfluid turbulence a convenient benchmark to study issues of
complexity.

Figure 1.  Tangle of superfluid vortex filaments

A superfluid vortex line can be described as a closed curve (Schwarz
1988) X = X(s,t) where s is arc length and ¢ is time. The line inter-
acts with the thermal excitations present in Helium II, which can be
modelled as a viscous fluid of velocity field v,; the interaction depends
on a temperature dependent friction coefficient . The instantaneous
velocity vy, of a point X of the superfluid vortex line is given by

VI = Vgelf + at x (v — Vself) (1)

where £ = dX/ds is the tangent unit vector and the self-induced velocity
Vself i given by the classical Biot-Savart integral

F/Ex(x*—X}
T

Veelf(X) = dr X+ — X3

ds (2)
where X* varies along the line and the integral extends to the collection
of vortex lines £; (i = 1,..N) which form the turbulent tangle 7 =
U; £i. Equations (1) and (2) are used to determine numerically the time
evolution of an initial system of vortex lines in the presence of a given
vy. The computer code also performs vortex reconnections when two
vortex lines become very close to each other. In superfluid turbulence
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reconnections do not involve dissipation and arise from the underlying
quantum mechanics in a way which is well described by the Gross -
Pitaevskii equation for a Bose - Einstein condensate (Koplik and Levine
1993, Leadbeater et al 2001).

In most experiments (Maurer and Tabeling 1998, Stalp et al 1999)
the normal fluid is turbulent. To represent v, we perform calculations
using two different models. The first is a steady ABC flow (Barenghi
et al 1997) given by v, (x) = (Vng, Uny, Un:) Where vy = Asin (2mkz) +
C cos (2mky), vny = Bsin (2mkz)+ A cos (2mkz) and vy, = C'sin (27ky) +
Bcos (2rkz) and A, B, C and k are parameters. The second is a more
realistic kinematic simulation of turbulence (Kivotides, Barenghi and
Samuels 2001) for which

j=J
V(X)) = Z[Aj x k; cos (kj - x + w;t) +B; x fcj sin (kj - x + w;t)] (3)
j=1

where J is the number of modes used, k; is a random unit vector, k; =

kjfcj, wj = (k3E ]U 2 and the directions and orientations of A; and B;

are chosen randomly but so that the energy of the mode j has the k =5

dependence of Kolmogorov turbulence.

A typical calculation starts with few seeding vortex rings as initial
condition (our results do not depend on the initial condition). The
initial vortex lines interact with each other and with the background
normal fluid, which feeds energy into them. Soon the initial lines become
distorted, grow, reconnect, and a vortex tangle is created (see Figure 1).

3. Complexity measures

To analyse the tangle’s complexity we project it othogonally onto a
given plane. The vortex loops are naturally oriented by the direction of
the vorticity, so, using standard convention, we assign an algebraic value
¢, = +1 to each apparent point 7 of self-intersection of the projected
tangle. An algebraic measure of the complexity of two loops £; and L;
is the average crossing number (Freedman and He 1991, Moffatt and
Ricca 1992)

) - dX; x dX;|
= T 1 4
Gy M{jﬁ |X T =< Y lel>, @

TrEL;NL;

where X; € £; and X; € £; and the angular brackets denote averag-
ing over all directions v of projection. The generalisation to the entire



72 C.F. Barenghi, D.C. Samuels and R.L. Ricca

collection of filaments is

C'= Z Cij - (5)

L L;€T

For computational simplicity we take only the projections onto the three
principal planes (z = 0, y = 0, z = 0) and obtain the estimated average

crossing number
CJ_:< Z|ET‘| >J_ ) (6)
r€Ty

where < - > indicates that the solid angle average is replaced by the
algebraic mean over the three principal planes of projection.

Another interesting quantity is the writhing number Wr which mea-
sures the average total coiling of a loop. For a single filament one can
show that (Moffatt and Ricca 1992)

Wr; =< Z & >, (7)

rEL;NL;

where the average is extended to the number r of apparent, signed
self-intersections of £;. The generalisation to the tangle is Wr =<
Y rer€r >. Again, it is computationally convenient to approximate Wr
by the estimated writhing number Wr , given by

Wri=< Y6 >, . (8)

The linking number Lk;; between two closed loops £; and L; provides
a measure of the topological linking and can be defined as

1
Lk,’j T § E €r . (9)
reLiNL;

Unlike previous measures, the linking number is a topological invariant
because it does not change under continuous deformations of the vortex
strands performed by a sequence of Reidemeister moves (Adams 1994),
so it is independent of the projection used.

The total linking Lk, of a system of vortex lines can be defined by

Lo = Y |Lkyl, (10)
[,,',,Cj eT
i#]

where we deliberately exclude contributions from self-linking (due to
writhe and twist of each vortex filament).
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The final measure of complexity which we consider is the kinetic he-
licity (Moffatt 1969) defined by

H=/vb-ud3X, (11)
Vv

where w is the vorticity and the integral is taken over the tangle volume
V = V(T). Since vorticity is confined only to vortex lines, w is a delta
function of strength I' in the direction £ along each filament of 7", and
we have

Hzrva-Eds, (12)
T
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Figure 2. Complexity measures versus time. (a) normalised length In (L/Lo); (b)
normalised energy In (E/Ey); (c) total linking In (Lkiot); (d) estimated writhing num-
ber In(Wry); (e) average crossing number In(C); (f) estimated average crossing
number In (C1); (g) absolute helicity In (|H|).

4, Results

We compute complexity measures as function of time as the vortex
tangle grows, and compare one another and against the tangle’s total
length L and kinetic energy E. Typical results are shown in Figure 2
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in the case of an ABC flow (Barenghi, Ricca and Samuels 2001) but
essentially similar results are obtained when the Kolmogorov turbulence
model is used. The initial rate of growth of L is in agreement with linear
stability calculations. As the vortex structure unfolds, the dynamics
develops structural complexity and entanglement. It is apparent that
the length is a good measure of the energy of the system, as in the
trivial case of a single straight vortex line. It is also apparent that,
after the initial transient, the growth rate of all complexity measures
is essentially the same, and is approximately twice the rate of growth
of the length. This means that vortex tangle grows by curling up and
folding upon itself more than by spreading and diffusing in space.
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