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Abstract Algebraic and topological measures based on crossing number relations
provide bounds on energy and helicity of ideal fluid flows and can be used to quantify
morphological complexity of tangles of magnetic and vortex tubes. In the case of
volume-preserving flows we discuss new results useful to determine lower bounds
on magnetic energy in terms of topological crossing number and average spacing of
the physical system. New relationships between average crossing number, energy and
helicity are derived also for homogeneous vortex tangles. These results find interesting
applications in the study of possible connections between energy and complexity of
structured flows.

Topological arguments show
That the energy’s bounded below;
But what’s so engrossing’s
The number of crossings,
From which my new insights will flow.

1. Magnetic and vortex knots as standard
embeddings

Consider an incompressible and perfectly conducting fluid in an un-
bounded domain D of IR? that is simply connected, with fluid velocity
u = u(x,t), smooth function of the position vector x and time ¢ and
such that V-« = 0 in D and w = 0 at infinity. Consider the class of
magnetic fields {B} that are solenoidal and frozen in D, that is

Be{V-B=0 and B =V x (uxB)}. (1)

Under ideal conditions these fields have their prescribed topology con-
served during time evolution. We restrict our attention to fields that
are localised in space and that are indeed confined to tubular neigh-
bourhoods of knots and links. By construction the field is standardly
embedded into nested tori 7; centred on smooth loops C; that are knot-
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ted and linked in D (Ricca 1998). For simplicity we take field lines that
are closed on themselves within each tube and that have same flux ®.
We therefore identify an n-component magnetic link with the standard
embedding of a disjoint union of n magnetic solitori in D:

LT (e=1,...,n) < Ly = supp(B) . (2)

Similarly, by replacing the magnetic field B with the vorticity field w =
V X u, chosen so as to satisfy (1) and (2), we obtain vortex knots and
links L,.

Let us denote by V = V(L,;) the total volume of the magnetic link
and consider the evolution of L,;, under the action of the group of volume-
and flux-preserving diffeomorphisms

¢: Lm = Lmg = @ulm . (3)

The magnetic energy and the helicity of L,,, are defined by
E(Lp) = [ IBII?d®*x, H(Lp)= / A -Bd’x, (4)
1 v

where A is the vector potential associated with B=V x A (V-A =0).
An important issue in topological fluid mechanics is to relate geometric
and topological properties to the energy and helicity of the fluid system
(for an introductory review see Ricca & Berger 1996).

2. Helicity, linking and average crossing
numbers

It is well known that helicity admits topological interpretation in
terms of linking numbers. We have:

Theorem (Moffatt 1969; Berger & Field 1984; Moffatt & Ricca
1992): Let L, be a collection of magnetic links (knots). Then

H(Ly) = Lk;®} +2)  Lki; ®:®; , (5)
i 7]

where Lk; denotes the (Calugareanu-White) linking number of C; with
respect to the framing induced by the embedding of the B-field in T;, and
Lk;j denotes the (Gauss) linking number of T; with Tj.

The Gauss linking number Lk;; = Lk(C;,C;) between C; and C; is
a fundamental topological invariant of link types and it is obviously

conserved under frozen field evolution. The linking number admits in-
terpretation in terms of minimal number of crossings of the link type: by
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Figure 1.  The Gauss linking number is a topological invariant of the link type
and its calculation, based on the sum of the signed crossings, is independent of the
projected diagram. The case Lk = +1 is shown here.

assigning €, = *1 to each crossing present in a given projected diagram
of the oriented link (omitting self-crossings and following a standard
sign convention), it can be expressed as sum over r signed crossings,
according to the formula

hi= [d=3 3 @ G#9), (6)
ij

T‘GC{NC}

where dw is the classical Gauss integrand form and N denotes over- and
under-crossings in plane projections (omitting self-crossings; see Figure
1). The Calugareanu-White linking number Lk; is also a topological
invariant associated with the field embedded in T} and it can be decom-
posed in two geometric quantities

Lk; = Wr; + Tw; , (7)

the writhing number Wr; (which measures the average space coiling of
C; in D) and the total twist Tw; present in Tj.

Linking numbers are closely related to the average crossing number C,
which is an algebraic measure of the link complexity in space (Freedman
& He 1991). For any pair ¢ and j of components this quantity is simply
given by the average total number of apparent crossings present in the
link and is defined by

Cy= [ ul=< 3 Jer >, (®)
Y reCi#C;

where # denotes all possible crossings (including self-crossings) of the
curves and <-> average over all possible planes. Now, since

[jd”‘ s/ﬁ dw] (9)
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and holds true for any given pair of components i and j, the inequality
can be extended to the whole system, hence by using (6) and (8), we
have

|2ZLkij|=[2Z(% IENDS |e,.|<ZC =¢. (10)

1#] i#] reC;NC; iy TeC;NC;

3. Topological bounds on magnetic energy

We consider the magnetic relaxation of the magnetic link L,, sub-
ject to a volume- and flux-preserving diffeomorphism, as discussed by
Moffatt (1992). For simplicity we assume that all link components have
same flux ® and that are all zero—framed, that means Lk; = 0 for each
t = 1,...,n. An interesting result that relates magnetic energy and
complexlty of the physical system is given by the following:

Theorem (Freedman & He 1991): Let L,, be an essential magnetic
link (or knot), then we have

16\® #2¢
E(Lp) > (?) V) (11)

Note that C' > Cuin, where Cpin denotes the topological crossing
number of the knot or link type. Moreover Moffatt has shown (1992)
that the energy is bounded from below, according to the inequality

E(Lm) > qo |H(Ly)| , (12)

where go > 0 depends on the geometry of supp(B), with a spectrum of
ground states given (1990) by

Eint(Lm) = m®*V (L) '/3 (13)

where m is related to the topology of the system. The problem whether
these infima can actually reach their minimum value remains open. Both
go and m were left undetermined.

By using the result of Freedman & He, combined with the inequality
(10), we can show (for a detailed discussion, see Ricca 2002) that

. 16 1/3 . 16 1/3
i) : qo_(m) , and ii): m-—(?) Cmin - (14)

Equation (14-i) and (12) state that for given linking complexity (with
notable exceptions: see Figure 2b), the smaller the volume, the higher
the energy level. This is in agreement with the intuitive idea that for a
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(a) (b) (c)

Figure 2. Three topologically distinct link types with n = 3 and Cyy;, = 6: (a) 63:
Lk = —3; (b) 63 (Borromean rings): Lk = 0; (c) 63: Lk = —1.

knotted rope the tighter the knot, i.e. the smaller the physical space it
occupies, the higher is its potential energy.

Equation (14-ii) identifies m with the topological crossing number of
the knot/link type. This result, combined with eq. (13), provides an
interesting and powerful relationship between ground state energy and
topology and shows the intimate relationship between the two. By direct
inspection of the link tabulation, it is however immediately evident that
there may be countably many topologically distinct links with equal
number n of components and same topological crossing number Cpin,
leaving partially open the fundamental question of identifying uniquely
ground state energies with topology. An example is given by Figure 2,
where three distinct link types with n = 3 and Cpin = 6 are shown:
assuming for these links same volume and flux, then all three links have
same FEj.r.

4. Vortex tangles and complexity

Finally, let us consider a tangle L, of (zero-framed) vortex filaments
in a steady state. As above, all filaments are assumed to have same
strength ®. Kinetic energy T' and helicity are defined as usual by

T(LU)E%/V ]| d®x H(LU)ELu—wfx. (15)

/u-wd3x S/Iu-w|d3x=¢’2/ |dw] (16)
% v ij

by applying Holder inequality to the second term, we have

Since

|H(Ly)| < 9°C < V2KQ (17)
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where Q = |, lw|?d®*x is the total enstrophy of the tangle. Work
on possible new relationships between complexity, topology and energy
of vortex tangles is currently under way and new results on complexity
measures can be found in the paper by Barenghi, Ricca & Samuels (2001)
(see also the paper in this volume).
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