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Abstract. In this paper we review some results on geometric and topo-
logical vortex dynamics. After some background on flow maps, topological
equivalence of frozen fields and conservation laws, we discuss geometric
aspects of vortex filament motion (intrinsic equations, connections with in-
tegrable dynamics and extension to higher dimensional manifolds) and the
topological interpretation of kinetic helicity in terms of linking numbers.
We recall basic results on evolution of vortex knots and links and outline
possible applications of algebraic, geometric and topological measures to
evaluate structural complexity of vortex flows.

1. Flow Maps and Topological Equivalence of Frozen Fields

Let D denote a fluid domain in IR3, that is an open, unbounded, singly
connected region of the Euclidean, three-dimensional space. The domain is
filled by a homogeneous, inviscid fluid, which is treated as a mathematical
continuum (i.e. neglecting microscopic and dissipative effects). Of course
this is a mathematical simplification of reality, justified by assuming that
the typical evolution time of the corresponding real process is much greater
than the dissipative and diffusive characteristic time.

Fluid motion determines a continuous time-dependent re-arrangement
of fluid regions in D. We assume that fluid particles move with a velocity
u = u(x,t), smooth function of the position vector x and time ¢, satisfying

V:u=0 inD,; u=0 asx—o00, (1)
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Figure 1. (a) A fluid particle moves in D by the action of a flow map ¢ associated with
the fluid velocity u; (b) as t varies, the collection of ¢, determines the trajectory followed
by the fluid particle in time.

and that fluid motion is governed by the Euler equations

du
E-I—(U‘V)u:—vl’— (2)

The velocity field u induces a map ¢ = ¢(x,t) that at each time sends the
fluid particle from the initial position a and time o to the position x and
time t: ; : a — x, Vt € I ([ finite). Since this map advances each fluid
particle from a to x, as t varies the collection of ¢; determines the particle
path followed by the fluid particle in time (see Figure 1).

We have:

Definition 1.1 A fluid flow map is a functional element ¢ € ®, where
®= {C”’: I lla=p i (x,t)VtETL ¢ volume-preseming} ,  (3)

where ® is a differential manifold of infinite dimension and CV denotes the
class of functions continuously differentiable of order v.

For obvious reasons we may want to take » > 3. Under the action of ¢
any portion of D will move in the fluid while changing shape, but keeping
volume constant.

Remark 1.2 In this paper we concentrate on non-degenerate (‘tame’) flow
maps, i.e. flow maps that are single-valued and continuous everywhere. Flow
patterns exhibiting cusp formation, bifurcations and other types of physical
singularities are actually ubiquitous in nature; however, we need to develop
appropriate mathematical descriptions to be able to include these type of
‘degeneracies’ in a comprehensive mathematical theory of fluid flows.
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Figure 2. (a) A box is filled by some fluid in V with a blob of denser fluid in W. Initially
the two fluids are at rest; (b) under the action of the gravitational force g the fluid in W
starts gradually to sink and penetrate V, leaving behind a subset of ‘virtual’ separation
S (dotted line). (c) As t — oo the denser fluid precipitates to the bottom surface of the
box.

Example 1.3 [Degenerate flow maps] A box is filled by two different fluids:
one fluid occupies a region V and a blob of denser fluid is concentrated in
W, floating on top of V (see Figure 2a). Suppose that the two fluids have
different, high surface tension, providing strong coherency of the bounding
surfaces (so as to avoid mixing). The two fluid system is initially at rest,
but is subject to a uniform gravitational field g. Since gravity pulls down
the blob of denser fluid, W starts gradually to deform to penetrate the fluid
in V.
At two instances the flow map becomes degenerate.

i) As the blob sinks into V, the boundary OW; = ¢:(dW,,) becomes in-
definitely stretched and since ¢; is assumed continuous on the entire fluid
domain D = WUV (over-bar denotes closure), V cannot be severed by the
motion of W. A subset § gradually develops (dotted line in Figure 2b):
this is where the inverse map ;! is multi-valued. The region S, of ‘virtual’
separation, is mathematically interesting and physically important, but in
most situations is ignored.

ii) As time passes the denser fluid gradually precipitates to the bottom
surface of the box to reach equilibrium. As t — oo the flow map ¢; becomes
ill-defined for the points at the bottom surface of the box (Figure 2c).

Try this experiment with oil and vinegar.
Question 1.4 Does the topology of V change during the two stages of the
process described in Example 1.37

Problem 1.5 To classify degenerate flow patterns by using concepts from
dynamical systems, graph theory and singularity theory.
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For any fluid region W in D we have that
OWe = (W) , (4)

which assures that any bounding fluid surface that is a material surface
at time tp, remains a material surface at all subsequent times ¢ and moves
with the flow (this follows from the definition of ®). The Jacobian J of the

transformation is defined by
oz;
J = det (33_,-) : (5)

where the tensor dz;/0a; represents the deformation of the infinitesimal
volume as it is transported by the motion. The symmetric part of this
tensor is associated with the distortion and change of the volume element,
while the skew-symmetric part is associated with its rotation. From the
assumption that ¢ possesses a differentiable inverse it follows that 0 < J <
00

Vorticity is defined by w = V X u and we assume that V-w =0 in D.
We have:

Definition 1.6 The circulation (or flux of vorticity) is defined by

5 - -dl:/ bdo
(5) K j{:u Swvo'

where C (of elementary directional length dl) is a simple unknotted, closed
circuit C = 0S8, and S (of elementary area do) is a simply connected two-
dimensional surface of unit normal U, pointing in the positive direction
induced by the w-field.

The two integrals are related by Stokes’s theorem and in ideal conditions
(Euler’s equations) the common value k = constant is an invariant of fluid
motion (Helmholtz’s III law and Kelvin’s theorem; see [30]). Moreover,

Definition 1.7 The vorticity field w is said to be frozen in D if and only
if it satisfies the transport (Helmholtz) equation

Ow
E?=Vx(uxw). (6)
Exercise 1.8 Derive Helmholtz’s equation from Euler’s equations (2), as-
suming conservative body forces.

A formal solution to (6) is represented by the Cauchy equations

Oz
wilx,1) = wj(a, to) 3~ (7)
7
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Figure 3. Topological equivalence between different configurations of the same fluid
structure: (a) ~ (b) ~(c) ~ (d).

that encapsulate both convection of the w-field from a to x, and rotation
and distortion of the fluid elements by the deformation tensor dz;/da;
(incompressibility is given by the condition det(dz;/0a;) = 1). Since the
tensor is a time-dependent diffeomorphism of position, it maps continuously
(i.e. without cuts or reconnections) the initial field w(a, o) to w(x,t), thus
establishing a topological equivalence between initial and final configuration
(Figure 3). We write

w(a: tt'.'i) N w(x,t) ] (8)

and we regard equation (6) as a master equation for frozen fields and equa-
tion (7) as a topological equivalence statement for the initial and final
configuration fields.

For more information on general aspects of fluid mechanics a standard
reference is [6]; on specific aspects of vortex dynamics a standard reference

is [30].

2. Conserved Quantities in Ideal Fluids

In absence of dissipative and diffusive effects the invariance of circulation is
of course just one manifestation of the ideal conditions of fluid motion. In
this context it is natural to expect the existence of families of such quantities
(not all necessarily scalars). One possible classification of invariants is based
on their nature:

(7) local (metric) ~——  pointwise
(i1) global (metric) — integral
(i12) topological (non-metric)  «— algebraic

As will be shown in §5 there are deep connections between continuum fluid
mechanics and topology. To this regard a fundamental question is:
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Problem 2.1 To classify and relate ideal fluid invariants and topological
invariants.

Problem 2.1 finds a more natural setting in the language of differential
forms. We shall briefly illustrate this point by showing how different con-
servation laws can be cast into one single differential form equation. We do
this by concentrating the discussion on local invariants.

2.1. LOCAL INVARIANTS AND DIFFERENTIAL FORM CONSERVATION
LAWS

Local fluid invariants can be classified in four categories:

I type: conserved quantity p (e.g. mass per unit volume).
Governing equation for scalar quantities as a balance conservation law:
dp
—+V-:(pu)=0.
5 TV (o)
II type: Lagrangian invariant S (e.g. a passive scalar, like ink).
Governing equation for scalar quantities advected Lagrangian invari-
antly by the flow:

as _ 03
dt — Ot

III type: frozen-in vector field w (e.g. vorticity).
Governing equation for vector quantities advected along the flow stream-
lines:
% —
at
IV type: Frobenius invariant S (e.g. momentum of a vortex ring).

Governing equation for vector quantities advected by Frobenius-type
surfaces frozen in the flow (see Figure 4):

ds
E—(SXV)XU.

+(u-V)3=0.

VXx(uxw).

All local fluid invariants can be classified in these four categories. These
four types of invariants can be expressed in terms of differential forms,
each one corresponding to an invariant wP-form (p = 0, 1,2,3) obeying the
conservation law

ow?P

Et‘uw” = W + fruwp =0. (9)

Note that since d, = L,d, equation (9) holds true also for dw?, where
dwP = wPt1; the four types of conservation laws are immediately recovered
by setting w® = ¥, w! =S, w? =w and w? = p.
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Figure 4. (a) The toroidal surface of a vortex ring translating in an ideal fluid provides
an example of a Frobenius surface for the linear momentum; (b) Frobenius surfaces frozen
in the flow.

Exercise 2.2 Prove that the only non-vanishing differential forms in IR3
are the wP-forms with p = 0,1, 2, 3.

General relations between invariant p-forms and conservation laws can
be derived from properties of differential forms [1, 10]. Similar considera-
tions can be applied to global types of invariants. For an extensive study of
these relations and possible connections with topological invariants see [34].

3. Geometric Dynamics of Vortex Filaments

Let us consider an isolated vortex filament (closed on itself or extending
to infinity) in D. We want to study the motion of the filament in terms of
geometric quantities such as curvature and torsion and highlight aspects
of motion that have interesting connections with integrable dynamics in
soliton theory and problems in applied differential geometry of minimal
surfaces. The analysis presented below has a long and fascinating history
that goes back at least a hundred years (for more information see the review

paper [26]).

3.1. INTRINSIC EQUATIONS OF MOTION IN EUCLIDEAN SPACE

To study the evolution of the filament in space we simply identify the fil-
ament with its vortex centreline I', smooth and free from inflections and
self-intersections. The filament has, however, finite thickness and for sim-
plicity we assume that its cross-section is circular, of radius a < R (where
R is the radius of curvature of I') and circulation k. At an arbitrary point
on T we position the origin of the intrinsic Frenet frame (%, 1, b), unit tan-
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Figure 5. Intrinsic Frenet frame on a curve I.

gent, normal and binormal vectors to I' (see Figure 5). Vorticity is simply
given by w = @t, where @ is a constant.

Remark 3.1 Given the distribution of vorticity w, the standard problem
is to find the induced velocity field u given by the Biot-Savart integral [30].

Let X = X(s,t) (s arc-length) denote the vortex line I' and £ = X'
(prime denotes arc-length derivative). Tangent, normal and binormal are
well-defined everywhere on the curve and satisfy the Serret-Frenet equations

¥'=en, #'=—ct+7rb, b'=-ri, (10)

where T is torsion. Let v = X be the velocity induced: by vorticity; in
intrinsic components we have v = (v, vn, v), where everything is a smooth

function of s and ¢ (over-dot denotes time derivative). Since t=X'=v,
after some algebra we can derive the intrinsic equations of motion of the
vortex filament in D. Assuming (for simplicity) inextensibility of I' we have
two intrinsic equations

¢ = (evi+v) —7v) = (Ton + )7, (11)
! = A
Fa [(cv; + v} 'r'w,ZT + (705 + v}) Llrui el (12)

that give the time-evolution of curvature and torsion of the filament in terms
of the initial geometry and induced velocity. The condition of inextensibility
is satisfied when the curve is parametrized by arc-length; this condition is
expressed by the third equation (congruence condition)

v =CYg » (13)
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A full derivation of equations (11)—(13) can be found in [26].

Exercise 3.2 (i) Prove the validity of condition (13) for arc-parametrized
curves. (ii) Using eqgs. (11)—(12) study the case of a circle that shrinks with
a velocity proportional to the curvature.

Exercise 3.3 Suppose v = vb(c,r)ﬁ where v, is a smooth function of ¢
and 7. Prove that in the stationary case (i.e. with ¢ = 0 and 7 = 0) egs.
(11-12) admit two integrals of motions given by:

Wy = viT = constant , (14)

and

" 2
vff — vt
Wi B e f vpe’ ds = constant . (15)
c r

3.2. INTEGRABILITY AND GLOBAL GEOMETRIC INVARIANTS

In the previous section we didn’t specify the induced velocity v of the fila-
ment. In actual fact this velocity is determined by the prescribed vorticity
by ‘un-curling’ (through the Biot-Savart integral) the equation w = V X v.
Given the vorticity (i.e. its distribution over the cross-section) we thus ob-
tain specific functional relationships for vy, v, and v,. We have further
(analytical) difficulties when we consider more realistic vortex motions, for
instance in presence of a varying cross-section and vorticity distribution).
The simplest case of a vortex line with w = @t (see §3.1) reveals interesting
connections with integrable systems. The asymptotic theory developed for
this case [26] shows that the motion, goverened by the so-called localized
induction approzimation (LIA), is given (after appropriate re-scaling) by:

LIA : =0, v,=0, Bp=c. (16)

Under LIA the intrinsic equations (11)-(12) take a much simpler form
known as Da Rios—Betchov equations.

Exercise 3.4 Under LIA reduce eqgs. (11)—(12) to the Da Rios-Betchov
equations and directly from these latter find the two integrals of motion,
particular cases of Wy and W; of Exercise 3.3.

By applying a Madelung transformation in the form

W(s,t) = c(s,8) € TENE | y(s et (17)
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we can map points from the (¢, 7)-space to the complex plane in €', thus
reducing the two intrinsic equations (11)-(12) in ¢ and 7 to one single equa-
tion in 9. By using eq. (17) Hasimoto [12] finds a remarkable relationship
between LIA and the non-linear Schrodinger equation (NLSE)

19y 0%y 1

_ % Luas

L2 = SR Sl (18)
that in one dimension admits solutions in terms of solitary waves (solitons).
From soliton theory we know that NLSE is indeed completely integrable
and has an infinite (countable) number of conservation laws in involution.
Under LIA vortex filament motion and integrable dynamics of soliton the-
ory are thus related so that we can interpret mathematical aspects of soliton
systems in terms of fluid dynamical properties. One interesting aspect re-
gards the existence of soliton invariants. Since 1 is a well-defined one-to-one
mapping from the solution space in (¢, 7) to the complex plane, its inverse
is also well-defined. By applying the inverse map ¥~! we can express the
family of conservation laws, obtained directly from (18), in terms of global
geometric functionals; the first three of them (neglecting the constant quan-
tities) are

4
]czds . /cz’rds ; /(C__ca_cg,rz) ds, s g (19)
r r r\4

where these integrals are all constants of the motion (invariant in time).
The set, however, is not complete and other integral quantities, not cap-
tured by the NLSE theory, are also conserved. Few of these quantities admit
physical interpretation in terms of kinetic energy, helicity, linear and angu-
lar momenta of the vortex filament (all conserved quantities under LIA as
well as under Euler’s equations), whereas the remaining provide a purely
geometric information (including total torsion, writhing, etc.) [24].

In recent years more work has been dedicated to extend these connec-
tions between vortex motion and integrability. As Fukumoto & Miyazaki
show [11], in presence of axial flow vortex filament motion can be reduced
to a Korteweg-de Vries type of equation, another soliton equation with infi-
nite number of conservation laws in involution. Further generalizations (to
include Hirota type equations and sine-Gordon equations) are also possible.
How general can we go to preserve integrability on one hand and vortex
motion on the other? And, is this a route towards integrability of Euler’s
equations? Asymptotic analyses based on Biot-Savart integral reveal an
increasing analytical complexity and it is doubtful that additional informa-
tion (given, for example, by tube thickness and distribution of vorticity)
can preserve integrability. Work in this direction is carried out, among oth-
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ers, by Fukumoto and collaborators. An interesting open question seems to
be the following;:

Problem 3.5 To determine under which general geometric conditions the
motion of a vortex line is completely integrable.

Langer & Perline [17] discovered interesting geometric relationship (not
necessarily satisfying the laws of vortex motion) between LIA-type of equa-
tions and the hierarchy of integrable one-dimensional systems. Their ap-
proach, based on the study of the Hamiltonian structure associated with a
class of soliton equations and their Poisson geometry, shows that it is pos-
sible to define a recursive operator R, that, starting from LIA, generates
integrable dynamics in cascade. The operator can be explicited as

X0 = ¢hb ,
gl‘.l . . (5—-1 . Hi Z “ 20
X)) = 1;“r )x t+ [fc(é,t)(vb("_l} + 'rvff'l))dé t, (20)
where j = 1,2,.... Note that the recursive operator (20) preserves arc-

length parametrization. General conditions for integrability of space curves
and relations to Backlund transformations and Lax pairs can be found
in [22].

Finally, since the motion of I is governed by the principle of least action,
the surface (in s and t) swept out by I' during the motion is a minimal
surface for kinetic energy. In the case of integrable dynamics, we may have a
natural connection between soliton theory and Plateau problems, and more
precisely between characteristic properties of soliton surfaces and geometric
aspects of minimal surfaces in the metric given by the kinetic energy of the
system. The situation is illustrated by the graph below:

Intrinsic ¥(s,t) Integrable
kinematics dynamics
«n(s}I Iaz
Minimal ? Poisson
P —
surfaces geometry

3.3. EXTENSION TO HIGHER DIMENSIONAL MANIFOLDS

The intrinsic equations (11)-(13) can be extended to 2n + 1-dimensional
manifolds M = IR?"*!, where I' is now an arc-parametrized curve in M.
The (0,2)-type metric tensor g is a smooth and positive-definite section
of the bundle of the symmetric bi-linear two-forms on M, given by g =



214

Euclidean space — M

Figure 6. Geometrization of compressibility in the Euclidean space by the curvature
tensor of M.

9ij dz*® dz’. Given a C" linear connection V on M, one can define a C™—1
torsion tensor T of type (1,2) by

T(Y,2) = 3 (VyZ = Vz¥ = [%,2))
and a C™~! Riemann (curvature) tensor R of type (3,1) by

R(Y,Z)(V, W) = [VyVzg(W) = VzVyg(W) - Viy zg(W)] (V) ,

where [Y, Z] is the Lie derivative of Z with respect to Y and V,W,Y,Z are
arbitrary C"*! fields.

The Serret-Frenet equations (10) take the general form given by the
S0(2n + 1)-structure for the generalized 2n curvatures Q = —Q% (i,j =

1,...,2n + 1), where Q! are sufficiently smooth functions of s and t. The
generalized induced velocity has components v’ in the basis {e;} given
by the metric g. By applying Ricci formula, and after some tedious but
straightforward algebra, we obtain the intrinsic equations in generalized
form [23]:

vl =2Tho! — Q42T for k=1, (21)

Sk k k = ot

Q.i:—l = A - Qk—l (Z Q:'H - 2kT:£) ’ (22)
i=1 1

where
A} = oF, +oFQE — 2T bo* |

Af = Afir),, + AR Qf - 2THAE, — QET1AL
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fork=2,...,2n4+ 1, and k = k — 1, k + 1. Equation (21) represents the
congruence condition for the arc-parametrized curve I' and (22) gives 2n
intrinsic equations for the time evolution of the curvatures 2% in M.

Remark 3.6 By taking g, T and R pointwise functions of density (via the
Jacobian J) we can geometrize the compressibility of the ambient space
by prescribing appropriate functional relationships between the connection
coefficients (hence the components of the torsion and curvature tensors)
and J (see Figure 6). In this way extension to higher dimensional manifolds
provides a route to a geometrization of fluid mechanical properties.

More information on geometric properties of fluid flows can be found
in the seminal papers by Arnold [3] and Ebin & Marsden [9], and in more
recent works by Holm, Marsden & Ratiu [13] and Shkoller [32].

4. Vortex Knots and Links and Reidemeister’s Moves

Vortex flux tubes are coherent bundles of vortex lines embedded in a tube-
like region. If the tube axis (which is a vortex line) is in the shape of a
knot or a link, the corresponding vortex flux tube, formed by the tubular
neighbourhood of vortex lines, is also knotted or linked. Formally, knotted
and linked flux tubes can be constructed in a standard way as indicated,
for example, by Moffatt [19] (see also [20]), that is via standard embed-
ding, Dehn’s surgery and appropriate cross-switchings. A formal definition
of knotted or linked vortex tubes is given here. Let us consider first the
following:

Definition 4.1 A surface § is a vortex surface in D if it is made of
vortez lines that are everywhere tangent to this surface.

As we remarked in §1 an ideal vortex surface S at time ¢ = t, remains
a vortex surface S; at every subsequent time, since Sy = ¢4(Sy, ).
Consider the standard solid torus T in IR?® given by

((2+ €cosB) cosa, (2 + ecosB)sina, €sinf) , (23)

where & € [0,27], 8 € [0,27] and € € [0,1]. Let F, 4 (p > ¢ > 1 co-prime
integers) denote the foliation of T by the curves I, g given by

[2 + ecos(B + gs)] cos(ps)
Lep(s) = ¢ [2+ €cos(B + gs)]sin(ps) 3 , (24)
esin(f + ¢s)

where s € [0,27]. We have
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Figure 7. Stretching of a vortex filament is produced by tangential actions on the tube
strands. This deformation leaves the filament in the same topological class.

Definition 4.2 A collection of linked (knotted) vortex tubes L, is
defined as a smooth embedding in D of finitely many disjoint standard solid
tori U;T;, and smooth vorticily w such that:

(i) L, is an embedding when restricted to the interior of U;T;;
(i) the bounding surface S = L;L,(9T;) is a vortex surface;

(iii) for each component L,(T;) there exists a pair {pi,¢;} (pi > ¢ > 1
co-prime integers) such that L, maps the foliation Fp, .. of T; onto the
integral curves of w in L,(T;).

If p and ¢ are real numbers, p/q is irrational and we can extend the
definition to vortex tubes formed by non-closed vortex lines (of support
I'c g) space-filling the tori L;T;.

Since vorticity is frozen in D, linked (knotted) vortex filaments are also
frozen in their topological equivalence class. Topological fluid mechanics
deals essentially with the study of fluid structures (thought of as embed-
dings) that can be continuously deformed one into another by ambient
isotopies. For example, a natural isotopic deformation is represented by
stretching of vortex tubes (geometrically equivalent to a time-dependent
re-parametrization of the tube centreline, see Figure 7).

From knot theory we know that topology is preserved under the action
of Reidemeister’s moves. In the context of the Euler equations these moves
are performed quite naturally by the action of local flows on the strands
of fluid structures. If the background fluid in the complement (D — L,) is
irrotational and at rest, then these flows must satisfy the Dirichlet problem
for the Laplacian of the stream function 1, given by

=V .
{ gy (D=L, (25)
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with boundary conditions

u-v=1uy on §=U;L,(0T3), (26)
u=20 as X — 00,
where u; = uj (x,t) is the normal component of the velocity on the vortex
boundary surface, with # denoting the normal vector to the surface. Equa-
tions (25) and (26) have a unique solution in terms of local flows [6]. These
flows act by performing a sequence of Reidemeister’s moves on the tube
strands through continuous deformations. Note that the boundary condi-
tion (26) does not prescribe the tangential component of the velocity on
the bounding vortex surface. As we pointed out earlier, tangential effects
(present for instance if the tube gets stretched) preserve vortex topology.
This means that Reidemeister’s moves are performed by local flows that
are solutions to (25-26), up to arbitrary tangential actions.

For some historical information and a simple introduction to topological
fluid mechanics see the review article by Ricca & Berger [28].

5. Helicity and Linking Numbers

A fundamental question in topological fluid mechanics is to understand
whether and how fluid and topological invariants relate one another. A
fundamental result regards kinetic helicity and its topological interpreta-
tion.

Definition 5.1 The kinetic helicity of a linked (knotted) vortex system
L, in D is defined by

H(L, =f cwdx . 27
(Lv) u‘_cv{T‘_}uw X (27)

Helicity is the fluid dynamical version of the Hopf integral, i.e. the in-
tegral of the inner product of a solenoidal vector field and its curl; isotopy
invariance of this quantity was discovered by Whitehead in 1947. However,
in the context of ideal fluid mechanics conservation of helicity (kinetic and
magnetic) was shown by the works of Woltjer (1958), Moreau (1961), Mof-
fatt (1969) and Arnold (1974) (see [18, 4]).

A fundamental result that establishes a bridge between topology and
fluid mechanics regards the topological interpretation of helicity in terms
of linking numbers. We have:

Theorem 5.2 ([18, 8, 20]) Let L, be a collection of vortex links (knots).
Then
H(L,) = ZLk k7 +2) Lkijkik; , (28)
E]
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where Lk; denotes the (Calugdreanu- White) linking number of the tube azis
of L,(T;) with respect to the framing induced by the embedding of the w-field,
and Lk;; denotes the (Gauss) linking number of L,(T;) with L,(T;).

Let £,(T) = K,(T) be a single vortex knot. Then, equation (28) reduces

to
H(K,) = Lkk® = (Wr + Tw) &%, (29)

where we write the (Cilugireanu-White) linking number Lk in terms of its
decomposition given by the writhing number Wr of the tube axis and total
twist T'w of the vortex tube (for a precise definition of these quantities see
the article of Langevin, this volume, and Moffatt & Ricca [20]). Note that
writhe and twist are purely geometric quantities and their values change
with a change of shape. This means that Wr and Tw change continuously
under continuous deformation, their sum remaining constant in time.

The writhing number Wr is characterized by the following properties:

i) Wr depends only on the geometry of the tube axis;

ii) Wr is invariant under rigid motions or dilations of the ambient space
(conformal invariant), but its sign changes under reflection;

iii) in passing from an under-crossing to an over-crossing of the tube strands
(in a given projection plane), its value jumps by +2.

Exercise 5.3 Show that the writhing number of a curve I' (as defined
by the integral formula given in Langevin’s article, this volume) admits
physical interpretation in terms of the sum of the signed crossings of the
diagram of I in a given projection plane, averaged over all projections, that
is

Wr=<ny(?)-n_(0)>, (30)

where the angular brackets denote averaging over all directions ¥ of projec-
tion, and n4 denotes the number of apparent + crossings, from the direction
of projection #. Derive eq. (30) directly from the integral formula.

Remark 5.4 For a nearly plane curve (except small indentations to allow
crossings) the writhe of the curve can be estimated by counting the sum
of the signed crossings that are apparent from that plane projection (see
Figure 8).

The normalized total twist Tw is given by the sum of the total torsion
of the tube axis and the intrinsic twist of the w-lines in the tube T', divided
by 27, and has the following properties:

i) Tw is a continuous function of the tube axis;
ii) Tw is invariant under rigid motions or dilations of the ambient space
(conformal invariant), but changes sign under reflection;
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direction of projection # ‘ll/

SO

projection plane

Figure 8. The writhing number of an oriented curve can be estimated by counting the
sum of the signed crossings of the diagram of the curve projected on the plane along the
direction P, then averaging over all directions.

iii) Tw is additive for contiguous tubular segments of T'.

Part of the twist contribution to helicity is therefore associated with
torsion of the tube axis and part with what may be described as ‘intrinsic
twist’ of the field lines in the vortex flux tube.

If the embedding of the w-lines corresponds to a zero-framing of each
component L£,(T;) (i.e. Lk; = 0 for each i-th component), then

(22) H(L;)= 22 Lk;; Kik; .

iJ
Note that as shown in Figure 9 there are cases of non-trivial zero-framed
vortex links with zero (Gauss) linking number Lk;; and thus zero total
helicity.

Higher-order linking numbers able to classify topologies otherwise not
captured by the standard Gauss linking number (as in the case of the
Borromean rings) have been studied by Berger [7]. Since links are close
relatives of braids, a hierarchy of linking integrals generates a family of
winding numbers for braids. Higher-order helicity integrals for braided fluid
structures are based on these invariants.
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Figure 9. The Borromean configuration for three zero-framed linked vortex tubes pro-
vides an example of zero (Gauss) linking number: the total helicity of this system is
zero!

For more information on aspects of helicity and fluid flows see the review
article by Moffatt and Tsinober [21] and the book by Arnold and Khesin [4].

6. Evolution of Vortex Knots and Links

6.1. THIN CORED VORTEX KNOTS

Thin vortex knots have been found as solutions to the localized induction
approximation (LIA; see §3.2). Remember that this is an approximation
of the Biot-Savart law of Euler’s equations. Existence and steadiness of
knotted solutions to LIA have been studied by Kida [15] and Keener [14].
Kida’s solutions are torus knots in the physical space. We have:

Theorem 6.1 ([15]) Let K, denote the embedding of a knotted vortez fil-
ament in an ideal fluid in D. If K, evolves under LIA, then there exists a
class of steady solutions in the shape of torus knots K, = T, ,.

In geometric terms Kida’s solutions are closed curves embedded on a
mathematical torus II, wrapping the torus p > 1 times in the longitudinal
direction and ¢ > 1 times in the meridian direction (p, ¢ co-prime integers).
The winding number is given by w = ¢/p, and self-linking given by Lk = pq,
two topological invariants of the knot type. Kida finds torus knot solutions
in terms of fully non-linear relationships that involve elliptic functions of
traveling waves.

Torus knots have two isotopes 7,, and 7,, (for given p and ¢), that
are topologically equivalent but geometrically different. Since vortex fila-
ment motion is influenced by the curve geometry (and in particular by
curvature), the question of evolution and stability of the two isotopes is
particularly interesting. By using linear perturbation techniques and cylin-
drical polar coordinates (r,a,z) it is possible to obtain ‘small-amplitude’
torus knot solutions that are asymptotically equivalent to those of Kida.
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(a) (b)

Figure 10. Evolution of torus knot 723 under LIA. (a) Initial configuration; (b) con-
figuration at a later time. The knot evolution is stable as predicted by the LIA analysis.
The tube shown is merely an aid to visualize vortex evolution [28].

The advantage of this approach is that we can write the solutions in terms
of simple trigonometric functions amenable to further analysis. A linear
stability analysis based on this approach gives the following result:

Theorem 6.2 ([25]) Let 7, , denote the embedding of a ‘small-amplitude’
vortez torus knot K, evolving under LIA. T,, is steady and stable under
linear perturbations iff ¢ > p (w > 1).

Numerical simulations have been carried out to check and investigate
properties of torus knot evolution based on the result of Theorem 6.2 [29].
Under LIA torus knots with winding number w > 1 translate and rotate
uniformly and steadily in space as rigid bodies. In the case of w < 1, how-
ever, instabilities develop almost immediately and the knot unfolds towards
reconnection events.

Figure 10 shows two snapshots of the stable knot 753 and Figure 11
shows the knot 73, when it becomes unstable and unfolds. These simula-
tions led to the discovery of a strong stabilizing effect present when the
full Biot-Savart law governs the evolution of LIA unstable knots. This is
a rather intriguing effect that merits further investigation. A beautiful ap-
plied mathematics problem is:

Problem 6.3 Given a vortex filament in the shape of a torus knot 7, ,,
with circular cross-section and uniform distribution of vorticity, to find the
induced velocity in terms of analytical solution of the Biot-Savart integral.
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(a) (b)

Figure 11. Evolution of torus knot 732 under LIA. (a) Initial configuration; (b) con-
figuration at a later time. The knot evolution is unstable according to the LIA analysis
and unfolds immediately [28].

Another interesting aspect of current research is represented by pos-
sible links between soliton invariants and torus knot solutions. Since LIA
and NLSE are related via the Hasimoto map (17), the infinite number of
conserved quantities in involution expressed in terms of global geometric
functionals (19) are also constants of motion of Kida’s torus knot solutions.
Finding connections between this family of invariants and the polynomial
invariants of knots could represent an important step towards closer links
between differential geometry, geometric topology and integrability theory.

6.2. THIN CORED VORTEX LINKS

From a mathematical viewpoint little work is done on vortex links, the
only known results being those of J.J. Thomson [33] more than a cen-
tury ago. Thomson considers particularly symmetric systems of links that
travel in steady motion as rigid bodies in the fluid. The simplest case is
represented by the Hopf link obtained by embedding two vortex rings I'y
and T'; equally spaced on the surface of a mathematical torus II of radius
R and small diameter d. This link system can be realized by the follow-
ing ‘thought construction’: choose a meridian plane of II and place two
point vortices (representing the cross-sections of the vortex filaments) on
the circumference in diametrically opposite position. Consider now the si-
multaneous uniform rotation of the two point vortices around the common
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Figure 12. Interpretation of J.J. Thomson’s ‘thought construction’ of a Hopf vortex link
system (n =2, Lk =1).

center of mass (i.e. the center of the meridional circumference) and around
the principal axis of the torus, along the great circle of radius R, in the
longitudinal direction (see Figure 12). The vortex link system results from
the collection of the two point vortex positions occupied after their full
(double) revolution.

Let A = max|X; — X}|, for points {X;, X!} € I, i = 1,2, and § =
min | X; — X;| for points X; € I'y and X; € I';. Assuming that A > ¢,
where A = O(R) and § = O(d), we have:

Theorem 6.4 ([33]) Consider the Hopf link given by two vortex rings of
equal circulation k and relative linking number Lk, embedded and equally
spaced on a torus Il in D. The vortez system is steady and stable iff

M(2mpr)t/?
LkP3/2
where p is the fluid density (constant) and M = |M| and P = |P| are the
intensities of the angular momentum M, and the linear momentum P of
the system.

< I, (31)

This is a remarkable result that combines geometry, topology and fluid
dynamics. The simplest link system (with Lk = 1) rotates and translates
with angular velocity © and translational velocity V' given by

K K 64R?
Td?’ s 41rR10g a?
Higher-order two-component link systems (i.e. with Lk > 1) are obtained
by increasing the number of full revolutions of the point vortex system
around the great circle (see Figure 13a).

Consider now n vortex rings linked together. As above, the system can
be thought of as generated by full revolutions of n point vortices (equally
spaced on the small circumference) around the two principal axes of II (in
the longitudinal and meridian direction) to obtain n-vortex components
linked in space (see Figure 13b). We have

Q= (32)
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(a) (b)

Figure 13. (a) A higher-order Hopf link with n = 2, Lk = 2; (b) a link of n = 3
components with relative linking Lk = 1.

Theorem 6.5 ([33]) Consider the link of n vortez rings of equal circula-
tion k and relative linking number Lk, embedded and equally spaced on a
torus Il in D. The vortex system is steady and stable iff n < 6.

This result, applied to a system of n point vortices in the plane, has
been refined by other authors (for more information see [30]). For recent
numerical works on simulations of vortex link production see [2] and for
reconnection and dissipation of a trefoil vortex knot see [16].

7. Algebraic, Geometric and Topological Measures of Flow Com-
plexity

Measuring structural complexity in vortex flows is becoming an important
aspect of fluid mechanics research. On one hand progress in geometric and
topological fluid mechanics and dynamical system theory give new tools
to explore dynamical aspects of fluid flows, including knotting and linking
of flow patterns, on the other hand numerical and computational progress
make now possible analyses and visualizations (visiometrics) of mechanisms
(such as vortex reconnection) with unprecedented details. Many mathemat-
ical concepts already developed are available for numerical implementation
and new ones are being put forward for application on test cases.

Based on the idea of a tropicity domain, given by the ‘numerical’ domain
determined by a computed vortex tangle (see, for example, Figure 14), we
can determine principal directional axes (tropicity azes) to measure degrees
of tubeness, sheetness and bulkiness of the vortex system and relative spread
of flow lines (particle paths, streamlines, vortex lines) [27].

For discrete vortex tangles (produced numerically by a simulation or
naturally in superfluids) directional writhing Wr(9) provides an estimate
of the geometric average coiling of projected vortex lines. This measure is
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(b)

Figure 14. (a) Computed vortex lines and (b) streamlines of a vortex tube produced by
direct numerical simulation of homogeneous, isotropic turbulence [30].

simply given by the writhing number Wr of the oriented graph resulting
from the projection of the tangle onto a projection plane of normal #. By
keeping track of the orientation of the curve (induced by vorticity) and by
assigning the value €, = 1 to each projected crossing r (according to the
standard convention on crossing signs; cf. eq. 30 of §5), we can calculate
the directional writhing by

Wrd)=) &, Wr=<) &>, (33)

whereas the writhing number Wr is given by averaging the directional
writhe over the whole domain. We can show [5] that this quantity is well
aproximated by the estimated writhing

Wry=<) &> ~Wr, (34)

obtained by taking the algebraic mean over the three principal orthogonal
planes (z = y = z = 0), that gives a simple, direct measure of the average
coiling of the tangle in space. _

Structural complexity is also measured by counting the total number of
apparent crossings present at a given time. This quantity, which is associ-
ated with un-oriented tangle diagrams, is defined by the algebraic measure

Definition 7.1 The average crossing number C is given by the total
number of apparent un-signed crossings of the tangle, averaged over the
whole domain D. We have

C=<Ylel>y - (35)
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Once again, it is computationally convenient to approximate this mea-
sure by the algebraic mean taken over the three principal orthogonal planes,
hence

CL=<) lel> ~C. (36)

Recent work done by Barenghi, Ricca & Samuels [5] shows that C provides
indeed a good approximation to C and it seems very effective to detect
structural complexity.

Finally, it is of fundamental importance to relate measures of algebraic,
geometric and topological complexity to physical properties of the system,
such as kinetic helicity and energy. To this end it may be convenient to re-
write eq. (28) in compact form. Consider the linking numbers Lk;; (i,5 €
[1,...,n]; Lki; = Lk;) as elements of a square matrix (n X n); since Lk;; =
Lk;;, we can reduce the linking matrix to diagonal form

Lkyy Lky2 ... Lk, My O ... ©
Lkyy Lkea ... Lkag . 0 Mp ... 0
Lk, Lkny ... Lk, 0 0 ... M,

where each element M;; takes into account self- and mutual linking of the
vortex lines. We can therefore re-cast eq. (28) in the form

- H(L)= Y Mif(R); (37)

i=1,...,n

where f(k) is a linear function of quadratic terms of the vortex circulations.

If the tangle is made of vortex filaments of roughly same length L (ob-
tained by an average measure over the tropicity domain D), we can show
that on dimensional grounds the enstrophy © of the system is given by a
relationship of the form

1
0=/D|w|2d3x=f > M f(x), (38)

i=1,...n

that provides an interesting connection with helicity. In steady state con-
ditions we can expect to find bounds for minimum enstrophy levels or for
other types of ‘ground state energies’ in relation to the complexity of the
physical system.

A combination of algebraic, geometric and topological measures to-
gether with kinetic helicity and energy measures provide indeed useful tools
to explore complexity and relate flow complexity to energy levels. Work in
this direction is in progress.
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