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Abstract

In this paper we address the problem of measuring structural complexity of
generic tangles of vortex lines in a fluid domain, by using a combination of geo-
metric and topological techniques. To this end new concepts based on the idea
of structural ‘tropicity’ are introduced to determine ‘tubeness’, ‘sheetness’ and
‘bulkiness’ of a vortex tangle and to evaluate the degree of topological entan-
glement. A number of cases are considered: from highly organised, coherent
vortex regions, given by the embedding of vortex coils, knots and links on
nested tori, to less organised vortical flows, such as tangles of chaotic vortex
lines. Various measures of linking (and helicity) are presented as well as esti-
mates of writhing and crossing numbers based on geometric and topological
information. Moreover, by using the concept of signature preserving flow we
extend the definition of classical stability to include wilder vortex dynamics
that during evolution preserve structural complexity. The tools and the new
concepts presented in this paper are useful for the classification and study of
general flow fields and can be employed to develop computational techniques
for measuring structural complexity.

1 Vortex structures as complex tangles of vortex
lines

Modelling and control of turbulent flows still defy mathematics for difficulty and
complexity. Spontaneous formation and interaction of self-organized, coherent vor-
tex regions are generic features of turbulent flows (Vincent & Meneguzzi, 1991;
Jiménez et al., 1993). Coherence (for a proper definition see §6 below) is essentially
due to the strong correlation of dynamical properties (such as fluid pressure, veloc-
ity, vorticity, strain, etc.) confined to localized regions in the fluid domain D. These
regions are occupied by extended, filamentary ‘structures’ in the shape of vortex
tubes and sheets (see, for example, Schwarz, 1988; She et al., 1990; figure 1). These
structures are present where vorticity w(X,t) = V x u(X, t) (where u(X, ¢) denotes
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Figure 1: Localization of vortex structures in a visualization of data from 512°-
element turbulence simulation in a numerical box (from Fernandez et al, 1996).

fluid velocity and everything is smooth function of the position vector X in IR® and
time t) is highly localized in a compact domain Q C IR®, of volume V() small
compared to the total volume V(D). We assume that the fluid in D is homogeneous
and incompressible, i.e. V-u = 0, and that there are no sources or sinks of vorticity,
that is V-w =0.

Numerical solutions of the real fluid equations (the Navier-Stokes equations)
and real-time simulations of complex flow patterns (see, for example, the papers
edited by Jiménez, 1991; Barenghi et al., 1998) show that vortex lines are funda-
mental constituents of complex vortical flows. Recent progress in computational
fluid dynamics, visualization techniques (Zabusky et al, 1993; Fernandez et al.,
1996), and fast data processing make it possible accurate identification and detailed
description of vortical structures. Formation, interaction and re-structuring of com-
plex tangles of vortex lines can now be traced with unprecedented resolution (figure
2). Evolution and interaction of large-scale vortices (produced naturally or artifi-
cially), as well as detailed mechanisms of braiding, reconnection and linking, are all
fundamental mechanisms of vortex dynamics. Geometric and topological measures
provide very important information. Recent applications of geometric and topolog-
ical concepts to fluid mechanics in general, and vortex dynamics in particular, have
led to the development of new tools in the mathematical study of fluid flows (see
the papers edited by Moffatt & Tsinober, 1990 and Moffatt et al., 1992; see also
Ricca & Berger, 1996). A combination of differential geometric techniques and knot
theoretical tools has proved to be particularly useful (Ricca, 1998a).

In the context of the Euler equations (inviscid limit of the Navier-Stokes equa-
tions), where there is no dissipation, vortex lines are material lines frozen in the



Figure 2: Close-up view of interaction and reconnection of vortex lines visualized by
advanced visiometric techniques of computational fluid dynamics (from Fernandez
et al., 1996).

fluid (consequence of Hemholtz’s theorem). Moreover vortex strength (intensity)
and all topological properties are conserved (consequence of the Cauchy solutions to
the Euler equations, see Saffman, 1992). Reconnections and consequential changes
in vortex topology, determined by the action of dissipative effects at a microscopic
physical scale, cannot take place in ideal fluids. Despite these limitations, study of
ideal evolution allows a detailed understanding of the role played by geometric and
topological quantities and provide us with important tools for measuring structural
complexity of real vortex tangles. It is in this context that we want to present and
discuss the concepts below.

2 Tropicity and linking of particle trajectories,
streamlines and vortex lines

Fluid motion is induced by a smooth velocity field u = u(X, t) in D, which satisfies
the solenoidal condition V - u = 0 in D and the condition to be at rest (u = 0)
at infinity (or on D). As time passes, fluid particles move from one position to
another: if a = X(a,0) denotes the initial position of a fluid particle at time ¢ = 0,
then we can define a flow map ¢ associated with u, so that at each instant ¢ a
particle at a is sent to the final position X(a,t) by the mapping

p: a—=+X, Viel, (1)

where I denotes some finite time interval. A particle trajectory xa is the collection
of all particle positions from a to X, and is labeled by the initial position from



Figure 3: Directional tropic vectors of a curve in IR®.

which it originates. Particle trajectories are the result of a time integration of posi-
tions, whereas material lines (such as streamlines or vortex lines) are instantaneous
snapshots of vector field lines. In particular, at time ¢ a streamline is a space curve
Ye(s) = (2(s),y(s), z(s)), whose directional tangent coincides with the velocity field
u = (ug, Uy, u;) at each point of Ty(s), i.e.

dz/ds dy/ds dz/ds @)
Uy owy U

Similarly, a vortez line T'y(s) = (z(s),y(s), 2(s)) is the embedding of the vorticity
w = (wg, wy,w;) onto the tangent field of I';(s), i.e.

dz/ds _ dy/ds _ dz[ds (3)

We Wy Wy

For steady flows, whose evolution is governed by autonomous velocity fields, particle
trajectories and streamlines coincide.

Structural complexity of particle trajectories and material lines can be charac-
terized according to their spatial distribution and degree of linking. The following
concepts are of general applicability, regardless if referred to particle trajectories or
material lines. To fix ideas let us consider a generic tangle! 7 of n vortex lines
['n,ie. T =U, T, Let us introduce the concept of ‘directional tropic vector’ and
‘tropic measure’ to characterize the degree of tubeness, sheetness and bulkiness of
T. Take a vortex line I' and two points P; and P; on I. The maximal extension of
['in D (see figure 3) is given by

D, =maxd(P,P) = RP =VX?+Y2+ 22, (4)

In this paper we do not use the word ‘tangle’ in a strict topological sense.
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Where P‘J — ('T‘U:yﬂizﬂ)s Pl = [xl:ylrzlj aﬂd
X=z1-20, Y=01-%, Z=2-2%. (5)

The unit vector T = (P, — P,)/D; given by the director cosines X/D;, Y/D,, Z/D,
provides the principal directional axis of I' in D, and we call it first directional tropic
vector. Let us consider the width of ' in D. Take the maximal distance of another
point P; on I' (not aligned with P, and P,) from the line {(Fp, P;): the width of T’
is given by
Dg = max d(R, J(Pg, Pl)) = sz_O ¥ (6)
where O € I(Py, P;) (O being not necessarily a point on I') is the orthogonal pro-
jection of P, on PyP,. As above, we can define the second directional tropic vector
as the unit vector T, = (P, — 0)/D,, which gives direction and orientation of the
second principal directional axis of I" in D. Finally, take the plane m = n(F,, Py, P»)
and consider the maximal distance from 7 of a fourth point P; on I, but off the
plane w. A measure of the three-dimensionality of the spatial distribution of I in D
is given by
D3=mud(RIW(P01P1:P2])EP;a1 (7)
along the direction of T3 = T, x T, (third directional tropic vector).

Now let us consider the tangle 7 = U, I'». The above concepts of tropicity
are extended to 7, where P; € 7 and D; (i = 1,2,3) denotes the maximal size of
T along the i-th principal axis. Tropic measures are used to identify a particular
shape of the flow structure. The tangle configuration can be characterized by one
of the following tropic quantities:

D
* if D3 = O(D,) and D; < D, then we have tubeness = A1 = 35
-z
. def D%
e if D3 < D, and D, = O(D,), then we have sheetness = Ay = Dz’
3
D\D,D.
e if D; = O(D,) and D, = O(D;), then we have bulkiness % A3 = 1D§ an
3

Other geometric measures can be employed to quantify alignment, rotation and
stretching of particle trajectories and material lines, and for a discussion of these
quantities we refer to the paper of Tabor (1992).

Directional tropic axes find an interesting application in the characterization of
the topological entanglement of 7. A fundamental measure is given by the asymp-
totic linking number. The concept of linking number plays an important role in fluid
dynamics (see the review article of Arnold & Khesin, 1998). For a tangle of particle
trajectories (and material lines) we can define the asymptotic linking number as
follows. Consider two particle trajectories xa and xp, with a # b. After some long
time T these trajectories are artificially closed on themselves by ‘shortest paths’,



Figure 4: Close-up view of streamlines (on the left) and vortex lines (on the right)
of a vortex tube in a numerical simulation of homogeneous, isotropic turbulent flow
(from She et al., 1990).

thereby defining two closed paths, say ¥a and Xp. The linking number Lk(%a, %p) is
defined as the number of signed intersection points of ¥, with the surface bounded
by Xb. The asymptotic linking number €k(a,b), associated with x, and xy is then
defined as

LkT (X_m Xb)

el (8)
where Lkr(Xa, Xb) is the linking number computed for orbits integrated for time 7.
The limit exists for almost every pair a, b and £k(a,b) is of L' class. It is useful
to define also the average linking number fk =< fk(a, b) >, where < - > denotes
average over the entire fluid domain.

A fundamental connection between topology and fluid mechanics is provided
by the relationship between linking number and helicity. The average linking of any
two orbits of a vector field coincides with the Hopf invariant and is indeed a measure
of the helicity # of that field. For the vorticity field w kinetic helicity is defined by

lk(a,b) = 11520

?-.{:/;u-de, 9)

and is a measure of the average linking number of the tangle of vortex lines in D.
A measure of relative linking of material lines about principal directional axes
of a given flow pattern provides a useful estimate of the amount of winding localized
in the flow. This measure is given by the directional linking number £§(Ti} defined
by the degree of linking of material lines with a principal tropic axis A; (along T;),
Le.
Tk(T;) = <tk(a, Ty) >, (10)
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where -
- . Lkr(Xa, M)
8k(a, Tg) — Tl:ﬂgo T 3
and where )\, is kept fixed in D. Figure 4 shows an example of localization, where
there is a high degree of tubeness and winding of streamlines and vortex lines,
measured by A; and €k(T,).

(11)

3 Measures of organised structural complexity:
vortex flow in a toroidal domain

Let us first recall a fundamental result of topological fluid mechanics (see the review
paper by Ricca, 1998a). For a vortex tangle 7 total helicity # is given by

H(T)=>Lk;i®}+2) Lki;®:®; , (12)
i i#]

where Lk; is the (self-) linking number of the tube axis of the i-th vortex with respect
to the framing induced by the embedding of w in D, and Lk;; denotes the linking
number of the ¢-th vortex with the j-th vortex. All quantities in (12) are conserved
during evolution. For each vortex component we have Lk = Wr + T'w, and so we
need a way to estimate Wr and Tw. The writhe can be measured by the sum of
the signed crossings of the diagram of the vortex axis onto some projection plane,
averaged over all projections, that is

Wr=<ni(v) —n_(v)>, (13)

where < - > denotes averaging over all directions v of projection, and n. denotes
the number of apparent + crossings, from the direction of projection v. For a nearly
plane curve (except small indentations to allow crossings) the writhe can be directly
estimated by the sum of the signed crossings. The total twist Tw is given by the
sum of the normalized total torsion

2—1?-/1;?'(5) ds , (14)

(T torsion of the vortex axis I, s arc-length) and the normalized intrinsic twist of
the w-lines about T

For organised vortex flows in a toroidal domain complexity can be evaluated
by direct measures of topological entanglement. Let us identify 2 with a toroidal
domain II, with irrotational fluid in D — II. A vortex ring in a fluid at rest pro-
vides a good example. Let us assume that vorticity may be decomposed into a
toroidal and poloidal component (along the longitudinal and meridian direction of
IT, respectively), i.e. w = w; + w,, and that |w;| > |wy|. The particular form
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Figure 5: A collection of vortex lines uniformly coiled, knotted and linked on nested
tori may provide an example of vortex ring modelling.

of the distribution, given by functional dependence of w in II, must satisfy a Pois-
son equation for vorticity, with appropriate boundary conditions on 911 (Saffman,
1992). Hence, admissible distributions of vorticity must be solutions to the Poisson
equation. Here we want to concentrate the attention on basic aspects of modelling,
by simply assuming that the functional distribution w (expression of the structural
complexity of the flow field) is a solution of the Poisson equation. This assump-
tion and the discussion that follows are consistent with the global theory of steady
vortex rings omeomorphic to a torus (see Fraenkel & Berger, 1974). Vortex ring
distributions of complex geometry and topology of the constituent vortex lines are
indeed admissible as possible solutions. These include vortex lines uniformly coiled
on nested tori, or in the shape of torus knots, or Hopf links on II (figure 5).

We consider here three examples of vortex ring distributions.

Vortez coils

Take a uniform distribution of unknotted vortex coils, multi-covering a family of
nested tori in D. Complexity is given by the distribution of multi-coverings of
toroidal and poloidal vortex coils, multiple foldings of the standard circle I,. From
a geometric viewpoint we classify these coils into two categories: toroidal coils U,
and poloidal coils U ,,, where the first index denotes the number of times the coil
wraps II in the longitudinal direction (along the torus grand circle), and the second
index denotes the number of times the coil wraps IT in the meridian direction (along
the torus small circle; sce figure 6).

All unknots are isotopic to one another, hence Uy, ~ U, ;. ~ Us, and each coil
contributes to the complexity of the system through individual contribution to the
degree of linking Lk of the vortex ring. Here Lk denotes the limiting form of the
Gauss linking number (self-linking) and is a measure of the linking of each coil with
the torus axis. Since Lk is the sum of writhe Wr and total twist Tw, both decidedly



Figure 6: An example of toroidal coil U, (on the left) and poloidal coil U, ,, (on
the right). These coils wrap a mathematical torus II (not visible in the figure) m
times in the longitudinal (or meridian) direction and only once in the meridian (or
longitudinal) direction.

non-zero, we have non-zero linking in the physical system. Hence, Lk = m and the
total helicity H (Moffatt & Ricca, 1992) amounts to

’H=fpu-de:(Wr+Tw)<P2=Lk'I)2=m¢2, (15)

where & is the total strength of the vortex ring. In this case m is an obvious measure
of structural complexity.

Vortez knots

Vortex lines in the shape of torus knots can be taken as another example of elemen-
tary constituents of organised structural complexity. Torus knots K, are closed
curves wrapped around II p > 1 times in the longitudinal direction, and ¢ > 1 times
in the meridian direction (p, q relatively prime integers; figure 7). Note that the two
knots obtained by exchanging p and ¢ (for given p and q) are topologically equiva-
lent, i.e. 7,4~ Typ- When p =1 (or ¢ = 1) the curve is not knotted and reduces to
the coil Uy ;m (or Up,;). Winding number w = q/p and self-linking number Lk = pq
provide a measure of topological complexity of the system.

Studies on vortex knots received new impetus recently, with the work of Kida
(1981), Keener (1990) and Ricca (1993), who showed that vortex torus knots 7,4
that move under the so-called Localized Induction Approximation equation (LIA for
short) are steady solutions of ideal fluid dynamics. LIA is however a cut-off of the
Biot-Savart equation that governs the motion under the Euler equations. Numerical
investigations based on the linearized equations have shown (Ricca et al., 1999) that
the motion consists of a simultaneous rotation and translation of the vortex filament
about the symmetry axis. Aspects of stability profoundly influence the dynamics.
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Figure 7: The standard trefoil knot 753 (on the left) and the isotope form 73, (on
the right). The two knots have different geometry but are topologically equivalent.

The motion of the vortex system is studied when small-amplitude perturbations are
superimposed on a steady state. If the amplitude of the perturbation decays with
time, then the system is said to be stable, if it grows, then we have instability. Torus
knots with winding number w > 1 are found to be LIA-stable, whereas the vortex
knots are unstable if w < 1, in agreement with the stability analysis of the LIA
theory (Ricca, 1993). The stable knot types tested can travel a considerable distance
(compared to the maximal vortex size) in the fluid domain, without any appreciable
change in shape and regardless of their complexity. Unstable knots unfold very
rapidly and break down through reconnections. It is interesting to note also that
poloidal and toroidal coils of the type discussed earlier are found to follow the same
stability criterium: poloidal coils U, ,, are found to be LIA-stable, whereas toroidal
coils Uy, are LIA-unstable. The most interesting results, however, come from the
investigation of the vortex evolution governed by the full Biot-Savart equation (no
approximations involved). Torus coil and knot types are found to evolve stably,
without visible change of shape, regardless of the value of their winding number,
w < 1 or w > 1. This behaviour appears to be generic and independent of the
complexity of the coil or knot type tested. The stabilizing action of distant parts
of the vortex system, absent in the local analysis of LIA, indicates that the effects
due to distant vortex elements considerably influence the long-term behaviour of the
whole system.

Vortez links

Vortex lines could be linked on nested tori by Hopf links L%, where n denotes the
number of components and k the degree of linking of each link type. For link systems
with linking number zero (such as Borromean rings) k may be then a generalized,
high-order linking number (Berger, 1990). In this case a vortex ring system is
obtained by embedding n-component vortex links onto nested tori (see figure 8). In
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Figure 8: Example of a two-component vortex link on a mathematical torus II: here
n=2and k=2

this case a measure of complexity is given by nk.

Although studies of ideal vortex links date back to J.J. Thomson (1883; see
also Ricca 1998b), no further progress has been done since. The classical results
of J.J. Thomson regard motion and stability of vortex links of the type £%. These
vortex link systems were found to be steady configurations, moving in the fluid
without change of shape as rigid bodies. Their motion is the sum of rotation around
the central axis of the torus and translation along this axis. Hence, the resulting
dynamics is given by a screw motion of the whole system in D (as in the case of
the torus knots above). Another interesting result regards stability. For n vortices
Ly, Thomson finds that the system is stable if n < 6, determining the period of
vibration as a function of k, a result that provides an early and remarkable example
of relationship between vortex dynamics and topology.

4 Geometric and topological measures for thin
cored vortex filaments

Since thin cored vortex filaments are highly localized objects, their visualization and
characterization is comparatively much easier than that of complex vortical flows.
By identifying thin cored vortex filaments, of small circular cross section of radius o,
with their centreline I' we can find estimates of the writhing number. An estimate
based on the LIA theory (Ricca, 1995) gives

Wr(T) ~ fr (L*¢ - 1)rds, (16)
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where L is the total length of the vortex axis I', of curvature ¢ and torsion 7. From
the previous equation and the definition of self-linking number Lk(T") of I', we have

LK(T) ~ L? /r crds . (17)

Useful relations between global geometric measures and topological informa-
tion are given by Milnor. A way to estimate whether I' is knotted or not is provided
by the following inequality for the total curvature of I' (Milnor, 1950): if

/r cds > 2rB(T) , (18)

where B(I') is the bridge index of I" (topological invariant), then I' is a knot. For
the unknot 4, we have B(If,) = 1. Clearly, if

[ c(s)ds < 4mB(T) , (19)
then I is unknotted. Moreover, the following inequalities hold true (Milnor, 1953):
21r$fcds§f(cz+'rz)”2d3sfcds+f[1'|ds, (20)
T r r r
and by applying a Milnor result (1953) to our definitions of tropicity, we have

fr cds + /r Ir|ds > 2rLk(T, %) , (21)

where Lk(T, ;) is the linking number of T with a directional tropic axis.
By considering the directional projection diagram of I, we have various esti-
mates of the writhing number. The following results hold true:

1. (Cantarella, De Turck & Gluck, 1998):

w2 (5" (22)

L R
Remark: if R = 1/c is the local radius of curvature of T', then =2 >1
and bounds on the writhe have no practical interest.

2. (Fuller, 1972): Let I'y be a reference curve and to(¢) and t(€) (a < € < b) be
the tangents to I'y and I, respectively. Then

3

lsin 7 (Wr(To) — Wr(D))| < 2£’ (_ +

dt
|G+ ) e

dto
€
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3. (Aldinger, Klapper & Tabor, 1998): Let m be an oriented plane of unit normal
v such that v is never parallel to the tangent t to I', and I'y be the v-projection
of I onto 7 (hence Iy is a planar curve on 7) of arc-length s, curvature ¢
and total length Ly. Then

o) -l < ol (1-3(3)) “

and
[Wr(T) - Wr(To)] < o= (1 o (-%‘-)2) / (2o [ ) o)

Remark: with the exception of L, obtained by direct estimates, the other
quantities refer to the geometry of the planar curve Iy (these quantities can
be easily obtained as a by-product of the numerical code).

Another measure of topological complexity is given by the asymptotic crossing
number ac(’) introduced by Freedman & He (1991). By considering the projected
diagram of I" onto the plane of normal v, we have

|(X(s) — X(s%)) - dX(5) A dX(s5")]
ac(T) = 411_[] IX %) —X(s)F =<n.(v)+n_(v)>, (26)

where s and s* label two different points on I'. As for the estimate of the writhe (see
previous section) n.. denotes the number of apparent + crossings, from the direction
of projection v, and <-> denotes average over all directions v of projection. We
emphasize that whereas the writhe gives a purely geometric information of the com-
plexity of the vortex pattern, Freedman & He claim that the asymptotic crossing
number provides a topological measure of the entanglement of I'. Through appli-
cation of the asymptotic crossing number, they found lower bounds for minimum
energy levels of magnetic knots. Similar applications in vortex dynamics might find
interesting results for energy estimates associated with changes in vortex topology
due to reconnection.

5 Measures of topological entanglement of open
vortex structures based on reference fields

Measures of topological entanglement of open vortex structures (figure 9) are par-
ticularly useful for numerical diagnostics and can be based on reference test fields.
Relative measures of topological complexity do not provide invariant quantities, but
give indications of local entanglement of the flow field. To illustrate these concepts,
we follow Polifke and Levich (1991). Let us decompose the fluid domain D into
two simply connected regions D = D°|J D!. If D is unbounded, we assume that all
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Figure 9: Hairpin vortex lines visualized in a numerical simulation of a boundary
layer of a fluid flowing against a wall (from Lesieur (Ed.), 1991).

surface integrals vanish at infinity. Consider two fields w' and w?, where w! = w
is the given vorticity field and w? is a reference vorticity field such that w? = w! in
D°. The corresponding velocity fields u* are defined by V x u* = w* (i = 1,2). All
fields are assumed to be solenoidal and smooth in D, with their normal components
continuous across the boundary dD". Berger and Field (1984) have shown that the
helicity difference AH = H' — H? of total helicities 7', given by

AH:Lu'-wldV—/Dug-wng, (27)

is gauge invariant and depends only on the vorticity fields inside D¥. It can be shown
that
A’H:fIV§-(wl+w2)dV—faD‘§(wl+w2)-udA, (28)
D

where V& = u! —u?, and v is the unit normal to the surface area A of dD. Polifke
and Levich suggest that the most suitable reference field should be a potential field
given by w? = V¢, where ¢ is a harmonic function (V2¢ = 0) determined uniquely
by the Neumann boundary conditions

V¢ vlgpt =w - V]aps - (29)
An alternative measure is the relative helicity Hr given by

ngfmui-(wl—wﬂdv, (30)

which clearly requires less information than that needed for (28). Admittedly, the
physical and topological interpretation of Hg is not so clear. Its relation with AH
is given by

A’HZHR-I—[DIUZ-( L w?)dV, (31)
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Q& ® @

Figure 10: A fluid structure 7~ evolves under a flow map  from the initial configu-
ration 1 (77 = ¢1(7)) to the final configuration 4 (73 = 4(7)). Only the evolution
between 2 and 3 is governed by a signature-preserving flow @;; hence 7> = T3, but
Ti 5 Ta (i.e. 7; and T; have different geometric signature).

where the integral term in the r.h.s of (31) is generally non-zero. However, Polifke
& Levich argue that since V2u? = 0 in D!, the integral term above should be
negligible for most field configurations, implying that Hg would actually provide
reliable relative measures of entanglement. A number of test cases were studied by
these authors to support their case.

6 Dynamical measures of structural complexity

Vortex structures may evolve by preserving geometric and topological aspects of
their shape, while allowing large-amplitude deformations. Even in the presence of
dissipation, we have cases where geometric features are preserved for a relatively
long time compared to the typical viscous dissipation time. It is therefore necessary
to extend classical concepts of dynamical stability to describe a much richer family
of dynamics. Another important issue in the study of complex flow systems is
‘robustness’, that may characterize certain fluid evolutions, where fluid properties
(such as helicity) tend to resist from decaying under dissipation. To make progress
in this direction we need to introduce new concepts based on dynamical measures of
structural complexity. These concepts are also useful to develop a measure theory
that is able to classify structured flow patterns dynamically. Let us introduce the
following:

Definition: ¢, is a (geometric) signature-preserving flow if it admits finite, large-
amplitude deformations (diffeomorphisms) that make the final configuration recog-
nizable in terms of the initial pattern.

Let us denote by 7; = ¢¢(7) the instantaneous mapping of 7 by ¢. If a structure
7T; evolves under ¢, for some time ¢ € I, then we write 7;, =~ T;, (where #; and t,
take values in I) to denote conservation of geometric signature (figure 10). Another
important issue is vortex coherency, that can be defined as follows:
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Definition: A vortex structure is said to be coherent if there is a spatial/temporal
statistical correlation over the mean values (or higher-order moments) of the dy-
namical characteristics taken over a length-scale of the order of the fluid domain
and a time-scale of the order of the typical evolution time of the phenomenon.

Dynamics that preserve geometric features (such as tropicity, mean curvature,
writhing number, twist, etc.) and topology (knot and link type, linking number,
etc.), while allowing large-amplitude deformations, have not been studied so far and
there is therefore a lack of rigorous definition and analysis. Upper bounds on tropic
measures, alignment and Lyapunov exponents, global and local curvatures, etc. must
be used to specify the diffeomorphisms that are signature preserving from the general
flow maps. Here we propose a new definition of dynamical stability in relation
to these specific evolutions. By taking into account large-amplitude perturbations
we can extend the usual concept of Lyapunov stability to include the dynamics
governed by geometric signature-preserving flows. The corresponding motion is
characterized by finite, large-amplitude, (Lyapunov) stable evolutions that conserve
geometric coherency and signature for some (finite) time of physical interest. Hence,
we can talk of vortex structures evolving under "stable” dynamics according to the
following:

Definition: A vortex structure is said to be (Lyapunouv) stable if it evolves under
signature-preserving flows that conserve topology, geometric signature and vortex
coherency.

Stable structures are therefore those able to evolve over a considerable distance
(much larger than their typical length-scale), while preserving geometric signature.
On the other hand, if they unfold and break-up in a short time (compared with the
typical time-scale of the phenomenon), we say that they are (Lyapunov) unstable.
The classification and study of flow patterns that show geometric and topological
complexity, while maintaining features of (Lyapunov) stability, represent an impor-
tant aspect of future research.

7 Conclusions

Self-organization of vortical tangles into coherent regions of long-lived structural
complex flows seems to be a generic feature of turbulent flows. A detailed anal-
ysis of these flows requires the use of a combination of geometric and topological
techniques in order to classify and measure structural complexity. In this paper
we have discussed applications of various concepts that will help to develop a-mea-
sure theory for complexity. In particular we have shown how classical geometric
quantities (such as global measures of curvature, writhing number and relative link-
ing estimates), topological quantities (such as link and knot type, linking number,
asymptotic crossing number) and new concepts based on the degree of ‘tropicity’ of
a flow structure (to characterize tubeness, sheetness and bulkiness of vortex flows)
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can find useful applications in fluid dynamics. We have introduced the concept of
directional tropicity to evaluate relative linking and estimate the degree of knot-
tedness of a vortex pattern and we have extended the classical concept of stability
to include those dynamics that preserve geometric signature during evolution. The
development of a measure theory to study structural complexity finds useful applica-
tions in many physical contexts such as in polymer physics (see, for example, Kantor
& Hassold, 1988; Agnes & Rasetti, 1994) and in chemical physics (see, for example,
Winfree, 1994), where structured patterns are present. The concepts discussed in
this paper, integrated with complementary measures of complexity developed for
dynamical systems (Ghrist et al., 1997), random systems (Millett & Sumners (Ed.),
1994; Kholodenko & Rolfsen, 1996), stochastic flows and entropic systems (Badii
& Politi, 1997), will be a very useful tool for carrying out efficient computational
diagnostics of complex flow patterns.
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