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CHAPTER 14
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In this paper we review classical and new results in topological fluid mechanics
based on applications of first principles of ideal fluid mechanics and knot theory to
vortex and magnetic knots. After some brief historical remarks on the first original
contributions to topological fluid mechanics, we review basic concepts of topological
fluid mechanics and local actions of fluid lows. We review some classical, but little
known, results of J.J. Thomson on vortex links, and discuss Kelvin’s conjecture on
vortex knots. In the context of the localized induction approximation for vortex
motion, we present new results on existence and stability of vortex filaments in the
shape of torus knots. We also discuss new results on inflexional magnetic knots
and possiblerelaxation to minimal braids. These results have potentially important
applications in disciplines such as astrophysics and fusion plasma physics.

1 Kelvin’s vortex atoms and the origin of topological fluid mechan-
ics

The use of topological ideas in fluid mechanics dates from the original studies
of Gauss »® on linked orbits and electric circuits, from Lord Kelvin’s 1314 first
investigations on vortex knots, and from Maxwell’s *° thoughts on magnetic
flux tubes (see the table in Figure 1 below).

Gauss’s work was followed by the studies of Listing on topological proper-
ties of surfaces (among which the famous one-sided band, wrongly attributed
to Mébius), and by the work of Riemann on analytic properties of irrotational
flows embedded in multiply connected regions (with applications to fluid flows
in presence of holes).

But it was Kelvin (then W. Thompson), who gave the greatest impe-
tus to applications of topological ideas to physics. His work was inspired by
Helmholtz’s ° influential paper on vortex motion, and was motivated by the
search for a fundamental theory of matter. Kelvin’s theory assumed the exis-
tence of a dynamical fluid ether permeating everything, in which natural forces
were generated. Kelvin's realization that vortex filaments in inviscid fluid were
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Linking number formula | Applications to vector fields
(C.F. Gauss, 1833) (J.C. Maxwell, 1873)
Classification of knots Applications to vortices
(P.G. Tait, 1867) (Lord Kelvin, 1867)

Figure 1: First contributions to the origin of topclogical fluid mechanics.

permanent, dynamical entities, led him to envisage a vortex atom theory 13,
whose fundamental constituents, the atoms, were knotted vortices embedded
in the ether. In absence of dissipation the topology of vortex structures, given
for example by the linking of two vortices, is frozen in the fluid, so that knotted
and linked structures remain knotted and linked indefinitely. For Kelvin the
topological specificity of each knot and link type provided a useful paradigm to
represent chemical elements and compounds. By interpreting knotted vortices
as elemental building blocks, and links as compounds, it was possible to envis-
age chemical structures ordered in a way similar to the modern periodic table
of elements. The puzzle of quantization of energy, revealed by the spectral
studies of light, could thus find a simple and natural explanation in terms of
the discrete specificity of the knot types. These ideas became part of a topo-
logical theory of matter3? ante-litteram. The mathematical study of knots and
links thus became an integral part of Kelvin’s programme, and this study was
carried out by his friend and collaborator Tait. The results of Tait’s work 3%
that included the first classification tables of knots, were published in a series
of three remarkable papers destined to become the foundations of modern knot
theory.

Other contributions followed soon. Most notably the work of J.J. Thom-
son % on vortex links (see Section 3 below) and the studies of fluid flows
in multiply connected domains (see, for example, Lamb’s Hydrodynamics '€).
These ideas survived for some time. In Lichtenstein’s mathematical theory
of hydrodynamics,'® for example, the importance of topology is emphatically
stressed by two chapters dedicated to the subject.

While Kelvin’s dream of explaining atoms as knotted vortices in a fluid
ether never came to fruition, his work was seminal in the development of
topological fluid mechanics. The recent revival is mainly due to the work of
Moffatt,?® on topological interpretation of helicity, and Arnold?} on asymptotic
linking number of space-filling curves. Modern developments have been influ-
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enced by the recent progress in the theory of knots and links, and by access
to fast computer and sophisticated numerical diagnostics. Various research
areas now benefit from use of topological techniques and fluid mechanics (an
overview of the present state of the art is given, for example, by the article of
Ricca & Berger 3°).

We list here some current research topics relevant to topological fluid me-
chanics: 22

e Knotted and linked solutions to Euler’s equations:

topological classification of fluid flows;

relationships between topology and dynamics;

— role of invariants and integrability;

relationships between topology and stability properties.
e FEnergy relazation for topologically complez structures:

— magnetic knots and braids;

electrically charged links;

relationships between topology and energy;

energy spectra for physical knots and links.

e Dynamical systems and measure-preserving flows:

existence theorems for 3-D vector fields;

topologically complex closed and chaotic orbits;

|

relationships between topology and Hamiltonian flows;

Lie-algebras of invariants.

e Change of topology and complezity measures:

singularity formation;

bifurcation theory and classification of singularities;

physical reconnection mechanisms;

measures of topological complexity and diagnostics.
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2 Basic concepts in topological fluid mechanics

2.1 Topological equivalence classes for frozen fields

We consider an ideal and perfectly conducting fluid in an infinite domain D of
IR®. Motion of fluid particles is given by a smooth velocity field u = u(X, t),
where X denotes the position vector and ¢ time. The velocity field satisfies the
solenoidal condition in D and the condition to be at rest at infinity:

Veu=0 , inD, (1)
u=0 , asX-oo. (2)

Fluid particles move in D from one position to another. If a = X(a, 0) denotes
the initial position of a fluid particle at time ¢ = 0, then we have a flow map
: induced by u so that each particle at the initial position a and time t = 0
is sent to the final position X(a,t) by

p::a— X, Viel, (3)

where I denotes some finite time interval. The flow map g is continuous, one-
to-one and onto, with inverse. For an incompressible fluid the flow map is
volume preserving, with Jacobian

J = det (?) =1. (4)

aj

Let 2 = Q(X, t) be a solenoidal (V-2 = 0) vector field in the fluid domain
D. Then, the evolution of the vector field £2 is governed by the following master

equation:

an
If Q is the vorticity w = V x u, eq. (5) is the Helmholtz equation for the
transport of vorticity in ideal fluids (Euler’s equations). Alternatively, if 2
is the magnetic field B, then eq. (5) governs the evolution of B in ideal
magnetohydrodynamics (MHD). Equation (5) admits formal integral solutions

called Cauchy equations, given by
a 0X;
Q(X,t)=02(a,0) —X =0, —
(X,1) (a,0) aax Q; Ba; ; (6)

that conserve topology. This means that while the field geometry changes
smoothly from one configuration to another by continuous actions of flow maps,
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Figure 2: Topologically equivalent configurations of a fluid pretzel.

the initial field topology is conserved. Equation (6) encapsulates both the con-
vection of the field from the initial position a to the final position X, and
the simultaneous rotation and distortion of fluid elements by the deformation
tensor 6X;/0a;. Since this tensor is a time-dependent diffeomorphism of posi-
tions, it maps continuously the initial field distribution Q(a, 0) to N(X, t) by
establishing a topological equivalence between the two fields. Hence, we write

N(a,0) ~ N(X,t) . (7

Under these conditions the field £ is said to be ‘frozen’ in the fiuid and initial
and final configurations are said to be isotopic to each other.

Continuous deformations of fluid structures are often complicated by twist-
ing and folding actions of fluid flows. The five configurations of a fluid pretzel
shown in Figure 2 provide a striking example of equwalent isotopies of a fluid
structure by (non-trivial) flow maps.

2.2 Action of local flows and Reidemeister’s moves

Ideal topological fluid mechanics deals essentially with the study of fluid struc-
tures that are continuously deformed from one configuration to another by
ambient isotopies. Since the fluid flow map ¢ is both continuous and invert-
ible, then ¢, (K) and ¢,(K) generate isotopies of a fiuid structure X (for
example a vortex filament) for any {t;,%,} € I. Isotopic flows generate equiv-
alence classes of (linked and knotted) fluid structures. In the case of (vortex
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Figure 3: The three types of Reidemeister’'s moves can be performed by natural actions of
local fluid flows on fluid flux tube strands.

or magnetic) fluid flux tubes, fluid actions induce continuous deformations in
D. One of the simplest deformations is local stretching of the tube. From
a mathematical viewpoint this deformation corresponds to a time-dependent,
continuous re-parametrization of the tube centreline. This re-parametrization
(via homotopy classes) generates ambient isotopies of the flux tube, with a
continuous deformation of the integral curves.

It is well known (see, for example, Kauffman !!) that knot topology is
conserved under the action of the Reidemeister moves (see Figure 3). In the
context of the Euler equations these moves are performed quite naturally by the
action of local flows on flux tube strands. If the fluid in (D — K) is irrotational,
then these fluid flows (with velocity u) must satisfy the Dirichlet problem for
the Laplacian of the stream function 1, that is

u=Vy

in (D-K 8
V2¢ =0 } ( ) ) ( )
with normal component of the velocity to the tube boundary u; given. Equa-
tions (8) admit a unique solution in terms of local flows? and these flows are
interpretable in terms of Reidemeister’s moves performed on the tube strands.
Note that boundary conditions prescribe only u,, whereas no condition is im-
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posed on the tangential component of the velocity. This is consistent with
the fact that tangential effects do not alter the topology of the physical knot
(or link). The three types of Reidemeister’s moves are therefore performed by
local fluid flows, which are solutions to (8), up to arbitrary tangential actions.

2.3 Ideal versus ‘real’ topological fluid mechanics

Relationships between topology and dynamics of fluid structures are very lit-
tle explored. Questions about topology and dynamics or stability of linked
vortices, topology and energy levels of magnetic loops, or energy relaxation of
knotted magnetic fields, are still very little studied.

In ideal conditions (i.e. in absence of dissipative effects) all topological
properties and physical quantities are conserved. These form a set of scalar and
vector invariants that guide the evolution of the system towards (homotopic)
solutions, whose existence is guaranteed by the diffeomorphisms associated
with the flow maps. Changes in the topology of the system occur only if
singularities, bifurcations and dissipative effects are present. Clearly, if we
want to model ‘real’ flow maps, then we cannot neglect the presence of wakes,
boundary layers and other fluid regions, where dissipative effects are indeed
relevant. Similarly, we cannot neglect the presence of physical regions, where
particle trajectories have wild behaviours, with bifurcations, multiple points
and singularities. In neglecting the presence of these physical regions we are
in fact limiting the validity of the models. Results obtained by techniques of
ideal topological fluid mechanics (where dissipative effects are ignored) should
therefore be preliminary to the study of real flows, but then complemented or
adjusted by ‘real’ fluid mechanics.

3 Links of thin core vortex rings

The first mathematical study of dynamical aspects of linked vortex rings was
done by J.J. Thomson 3¢ (see also the paper by Ricca & Weber ®?). His work
was inspired by Kelvin’s vortex atom theory, and provides one of the most
remarkable examples of combination of topological ideas and fluid mechanics.
Thomson’s idea was to study vortex structures, linked and knotted together,
by using thin core models of vortex rings and basic notions of linking, based
on Gauss’s formula of linking number? Thomson tackled the problem by con-
sidering a particular geometry given by two linked vortex rings lying on the
mathematical surface of a torus II of radius R and small diameter d. The
simplest example of this kind of link was given by two inter-linked rings, C,
and C;, embedded on II as shown in Figure 4.



Figure 4: Simple link of two rings C; and Cs, lying on the mathematical torus I1: the number
of components is n = 2, and the linking number of the system is Lk = 1.

In Thomson’s view the vortex link geometry is the result of the uniform,
rigid rotation of two point vortices (representing the cross-sections of two vor-
tex filaments) around their center of mass (in the meridian plane of II), making
one complete rotation around the great circle (of radius R) in the longitudinal
direction. The vortex filaments were given by the collection of the point vortex
positions. The resulting vortex system, made of these thin, closed vortex fil-
aments embedded in ideal fluid, is frozen. Hence, the dynamics of the system
is expected to be influenced by the type of linking.

Let A = max|X; — X]|, for points {X;,X?} € C;, 1 = 1,2, and § =
min [X; — X;| for points X; € C; and X; € C,. If we assume that A >> 6,
where A = O(2R) and § = O(d), then we can show that:

Theorem (Thomson, 1883). Consider the link formed by two vortez rings

of equal circulation & and relative linking number Lk, embedded and equally
spaced on a torus Il in D. The vortez system is steady and stable iff

M (27p3)*/?
Ikpyz <o (9)

where p is the fluid density (constant) and M = |M| and P = |P| are the
intensities of the angular momentum M, and the linear momenium P of the
system.

The simplest link system (with Lk = 1) rotates and translates as a rigid
body, with angular velocity 2 and translational velocity V given by

) & 64R?

= — V=—oH .
“ wd? ' 4rR B g2

(10)
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Figure 5: Example of higher-order link made of two rings: in this case n=2, Lk = 2.

Higher-order link systems (i.e. two-component link with Lk > 1) are realized
by a higher number of full rotations of the point vortex system around the
great circle (see Figure 5).

Consider now n vortex rings linked together. Following a similar construc-
tion, the n-component link is now given by n inter-linked vortices on II (see
Figure 6). The system is generated by the rigid rotation of n point vortices
equally spaced on the torus small circumference. After a long and laborious
analysis Thomson finds the following result:

Theorem (Thomson, 1883). Consider the link of n vortez rings of equal
circulation ® and relative linking number Lk, embedded and equally spaced on
a torus Il in D. The vortez system is steady and stable iff n < 6, with period
of vibration

27
= : 11
@ i (2113&:2 -1) é (11)
d? 4a? °8

This result has been confirmed by later works in the theory of point vortex
motion in the plane33
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Figure 6: Example of higher-order link given by three rings on the torus I1: n=3 and relative
linking Lk = 1.

4 Evolution and stability of thin vortex knots

4.1 Keluvin’s conjecture and voriez knot dynamics

In his vortex atom theory, Kelvin !* conjectured (see Vortex Statics, p. 123,
¢ 16) that thin vortices in the shape of torus knots could exist as steady and
stable fluid structures. Vortex knot solutions (to Euler’s equations), if existed,
could move with constant speed in the fluid and, if disturbed, vibrate about
their equilibrium configuration. From a mathematical viewpoint the search for
the existence of vortex knots remained open, and only in recent years there
has been a real progress in this study. Here we want to present and discuss
some new results.

Thin vortex knots have been found as solutions to the so-called ‘localized
induction approximation?” (LIA for short). This is an approximation of the
Biot-Savart law for Euler’s equations. Under LIA, vortex motion is governed
by a law, that after appropriate re-scaling of the time variable, takes the simple
form

LIA : u=X=X'xX"=¢cb, (12)

where u is the vortex velocity, the dot denotes time-derivative and the prime
denotes derivative with respect to arc-length along the tube axis. ¢ and b
are local curvature and unit binormal to the axis. It is interesting to note
that since eq. (12) is equivalent to the non-linear Schrodinger equation? we
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have a countably infinite number of polynomial conserved quantities (soliton
invariants) that can be written as global geometric functionals!%23

Existence and steadiness of knotted solutions to LIA have been studied by
Kida !5 and Keener!? Kida’s solutions are torus knots in the physical space
and represent the first vortex knot solutions found by analytical methods. We
have:

Theorem (Kida, 1981). Let K, denote the embedding of a knotted vortez
filament in an ideal fluid in D. If K, evolves under LIA, then there ezists a
class of steady solutions in the shape of torus knots K, =T, ,.

In geometric terms Kida’s solutions are closed curves embedded on the
mathematical torus, wrapping the torus p > 1 times in the longitudinal direc-
tion and ¢ > 1 times in the meridian direction (p, ¢ co-prime integers). The
winding number is given by w = ¢/p, and self-linking given by Lk = pq, two
topological invariants of the knot type. Kida gives the solutions in terms of
fully non-linear relationships that involve elliptic functions of traveling waves.
A more direct and simpler approach has been proposed by Ricca?® and is based
on linear perturbation techniques and cylindrical polar coordinates (r, a, z). By
this approach we find ‘small-amplitude’ torus knot solutions (asymptotically
equivalent to Kida’s solutions) given by

r = ro + €0k, sin (wg + @o)

s k.
a= £+€°w—m cos (we + o) (13)

t" 1 1/2
z = — + €k, (l - -‘3) cos (wé + ¢o) -
To w

ro is the radius of the torus circular axis and €y = a/rp < 1 is the inverse
of the aspect ratio of the vortex, with a the radius of the vortex cross-section
and k, = O(ro) a scale factor. Moreover ¢ = (s — kt)/ro, with ¢ time, £ a time
re-scaled with the vortex circulation, and ¢g a constant.

4.2 New results on stability of vortez knots

Since torus knots have two isotopes 7, , and T, (for given p and g), that are
topologically equivalent but geometrically different, the question of their evo-
lution and stability is particularly interesting. A linear stability analysis 2%26
based on equations (13) leads to the following result:

Theorem (Ricca, 1993; 1995). Let T,, denote the embedding of a ‘small-
amplitude’ vortiez torus knot K, evolving under LIA. T, , is steady and stable
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Timet; >ty

Figure 7: Evolution of torus knot 73 3 under LIA. The knot is found to be stable as predicted
by the LIA analysis of Ricca. The knot is visualized by centering a thin tube on the knot
axis. The tube shown is therefore a virtual object and its thickness is not measured by ag.

under linear perturbations iff ¢ > p (w > 1).

Kelvin's conjecture can be therefore tested using this criterium. Numerical
calculations 343! have been performed to check and investigate the validity of
the above result, and confirm that knots with winding number w > 1 are
indeed stable under LIA evolution.

Figure 7 shows two snapshots of the stable knot 73 3 and Figure 8 shows
the knot 73, as it becomes unstable and unfolds. Another interesting result *!
is the discovery of a strong stabilizing effect due to the full Biot-Savart law.
Take for example the knot 73;5: this knot becomes immediately unstable under
LIA, whereas it remains stable under Biot-Savart, travelling a considerable
distance. Although we find that these knots eventually de-stabilize (remember
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Timet; > ta

Figure 8: Evolution of torus knot T3> under LIA. The knot is found to be unstable as
predicted by the LIA analysis of Ricca. The knot is however stabilized when its evolution is
governed by the Biot-Savart law.

that some numerical noise is always present), the time which elapses and the
distance over which the knot travels before breaking-up is very large and has
physical significance.

Finally, let us point out that unstable vortex knots evolve under LIA to-
wards a reconnection event. This is another interesting feature of vortex knot
evolution, especially in view of the great interest for the study of singularity
formation. No doubt that these results will stimulate more numerical work and
will certainly give new impetus to the mathematical search for the existence
of steady and stable vortex knot solutions under the Euler equations.
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5 Magnetic knots, minimal braids and energy estimates

5.1 Evolution of inflezional magnetic knots

Magnetic knots are the physical analog of vortex knots, when we replace vortic-
ity with the magnetic field (so that the physical knot becomes a magnetic flux
tube). Magnetic knots evolve according to a dynamics given by the Lorentz
force. For a solenoidal magnetic field B = B,, + B, given by a meridian (i.e.
poloidal) component B,, and an axial (i.e. toroidal) component B,, where

B, = [0, Bs(r,9(s)),0], Ba=1[0,0,B,(r)] (14)

with By and B, smooth functions of radius of the tube cross-section r (0 <
r < a) and azimuth angle 9 = ¥(s) (0 < ¥ < 2x; s arc-length on the tube
axis), we have?®

2

F, =B,‘%ﬁ— BT‘+%%(B§”+B,“)]6,, (15)
where F; denotes the component of the force perpendicular to the tube axis.
Here K is a scale factor (function of the geometry), and 11 and &, are two unit
vectors in the principal normal direction and in the radial direction to the tube
axis. Since F, is the only component of the force responsible for the motion
of the knot in the fluid, in a first approximation we can write F =~ c1, with
force proportional to curvature, along the principal normal of the knot axis.
This force induces a tension in the physical knot and a shortening of the lines
of force.

In general magnetic knots exhibit inflexional configurations. The geom-
etry of these configurations is characterized by a change in concavity in the
tube axis, at a point where curvature vanishes (inflexion point). Inflexional
states are easily identified in plane curves: in this case the inflexional geome-
try is simply given by an S-shaped curve with the inflexion point at the change
of concavity. Inflexional configurations in magnetic field structures, however,
are ubiquitous, especially in rich topologies. Moffatt & Ricca ?* showed that
the appearance of inflexional states is invariably associated with the continu-
ous exchange of writhe and twist (see Figure 9), a natural mechanism in the
evolution of magnetic structures.

The dynamics of magnetic flux tubes in inflexional configuration has been
studied by applying the Lorentz force equations to a generic deformation
through inflexion. It can be shown ?® that inflexional states represents dis-
equilibria for magnetic configurations. In particular we can state the following
result?®
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Figure 9: Competition between twist and writhe in a magnetic knot.

Theorem (Ricca, 1997). Let K, be the embedding of a magnetic knot in D.
If Kon has a finite number of inflezion points in isolation, then Knm evolves to
an inflezion-free configuration, possibly in braid form.

As we shall see below this result has important consequences for the first
stages of the relaxation of magnetic knots.

5.2 Relazation of inflezional knots to minimal braids

Since inflexional magnetic knots are in disequilibrium, they remove inflexions
by re-arranging the geometry to form topologically equivalent configurations
free from inflexions. In general the Lorentz force induce a natural tendency
to minimize the magnetic tension present in the tube by reducing the surplus
of internal magnetic twist (through an increase of writhing), and by remov-
ing inflexion points. This favours a deformation to topologically equivalent
inflexion-free configurations. In absence of other forces, the evolution is then
dominated by curvature forces that induce a continuous, progressive shorten-
ing of the field lines (hence of the knot) toward a minimum energy state. In
the ideal process, virtual crossings and inflexional states are naturally removed
and the knot relaxes isotopically to an inflexion-free configuration, with least
possible number of (real) crossings (‘minimal closed braid form’; see Figure 10).
In general this number of crossings is equal to, or higher than, the topological
crossing number.

Minimal braids are particular geometric representations of knot types.
From a purely topological viewpoint, any knot can be isotoped to a closed
braid by a sequence of Reidemeister’s moves (in braid theory this result is
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Figure 10: Two different knot types are shown in standard, minimal projection (on the left

hand side) and in their topologically equivalent minimal, closed braid form (on the right

hand side). Note that the knots in their standard representation exhibit at least two points

of inflexion, denoted by I} and I in the diagram. These knots can be both isotoped to their

minimal closed braid representation, which is given by an inflexion-free configuration with
the least possible number of crossings.
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known as Markov’s theorem *). The deformation of an inflexional knot into
a closed braid representation (as is given in the ‘conjugacy class’ of the knot
type) is likely to introduce new crossings. To see this, let us consider the
two examples of isotopic transformation of knotted loops shown in Figure 10.
The diagrams on the left show two different knot types in minimal projection,
L.e. in the plane projection for which the number of crossings is the topolog-
ical crossing number Cpin. In this configuration the knots have at least two
points of inflexions (denoted by I and I; in the diagrams; note that inflex-
ional states are intrinsic geometric features independent of projection angle
and viewing direction). The corresponding diagrams on the right, however,
show no points of inflexions, and represent the isotopic configurations of the
knots in the minimal braid form, with curvature vector pointing always inward
the braid region. Note that in passing from the minimal standard to the mini-
mal braid configuration the four crossing knot conserves the minimum number
of crossings (Cmin = Co = 4), whereas the five crossing knot (with Cpin = 5)
has the least possible number of crossings Co = 6 > Cmin. In general we
have Cp > Crin. Our analysis?® based on standard results of knot theory1®37
shows that indeed there are infinitely many knots (whose simplest representa-
tive is the five-crossing knot) that cannot be transformed to minimal braids
by ‘equi-minimal’ isotopies (i.e. by conserving the minimum possible number
of crossings). The existence of a family of knots that have ‘non-equi-minimal’
braid representatives seem to have important consequences for the estimates
of energy minima of magnetic knots.

5.3 Possible consequences for energy estimates

Mathematical estimates of minimum energy levels based on topological infor-
mation have shown 256329 that minimum energy states of physical knots can
be related to topological quantities such as linking number and crossing num-
ber. Lower bounds for energy levels of magnetic knots are given by relations
of the kind

Ein > f(él Vs n, Cmin) ) (16)

where Epi, denotes the ground state energy and f(-) gives the relationship
between physical conserved quantities — such as total flux ®, magnetic volume
V, number of tubes n (in the case of an n-component braid or link) — and
topology (here given by Cmin). Typically, in these relations energy increases
with knot complexity. The inequality sign allows ample margins for errors, so
that these estimates are still rather qualitative. For inflexional magnetic knots,
far from their minimum energy state, our results indicate that ground energy
levels may be strongly influenced by the presence of inflexions. Since inflexions
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represents disequilibria of thin magnetic knots, inflexional knots will tend to
remove inflexions and relax to minimal braids first, before relaxing further to
their ground energy state. But minimal braids are likely to have least possible
number of crossings Co > Cmin (as for the five-crossing knot of Figure 10).
For this sub-family of minimal braids (‘non-equi-minimal’ braids) we expect
an Emin higher than the theoretical bound given by the equality sign in (16).

This studies find useful applications in applied disciplines, such as astro-
physics, solar physics and fusion plasma physics. For solar coronal loops, for
example, a difference in the crossing number of the relaxing magnetic braid has
important physical consequences for energy estimates, especially when these
estimates are based on theoretical models that are very sensitive to variations
in geometric and topological information. The accuracy of these estimates is
crucial to give precise evaluations of the amount of energy that can be released
into heat during flares and microflares. Future progress in this direction will
be very important for energy studies.
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