TOPOLOGICAL IDEAS AND
FLUID MECHANICS

he use of topological

ideas in physics and
fluid mechanics dates back
to the very origin of topology
as an independent science.
In a brief note in 1833 Karl
Gauss, while lamenting the
lack of progress in the “ge-
ometry of position” (or
Geometria Situs, as topology
was then known), gives a remarkable example of the
relationship between topology and measurable physical
quantities such as electric currents.! He considers two
inseparably linked circuits, each of them a copper wire
with ends joined, and flowing electric current. Without
comment he puts forward a formula that gives the rela-
tionship between the magnetic action induced by the
currents and a pure number that depends only on the
type of link, and not on the geometry. This number is a
topological invariant now known as the linking number.
The formula, as well as the very first studies in topology
done by Johann Benedict Listing in 1847, became known
to Kelvin (then William Thomson), James Clerk Maxwell
and Peter Guthrie Tait in Britain.

Hermann Helmholtz’'s 1858 paper on vortex motion
made it possible to apply the new topological ideas to fluid
mechanics. His laws of vortex motion state that in an
ideal fluid (where there is no viscosity) vortex structures
live forever: Two closed vortex rings, once linked, will
always be linked. Kelvin, like many others, was in search
of an ultimate theory of matter. Tait’s translation of
Helmholtz’s paper on vortex motion provided a wonderful
inspiration. Kelvin was so impressed by Helmholtz’s laws
that he became a fervent believer in the eternal existence
of vortex atoms as fundamental constituents of nature.
In his theory, atoms were thought to be tiny vortex
filaments embedded in an elastic-like fluid medium, called
ether. The infinite variety of possible chemical compounds
was given by the endless family of topological combina-
tions of linked and knotted vortices. Even the fluid ether
surrounding these vortices could have a complex topology
in which empty holes and inaccessible closed channels
were present. He wrote about this with incredibly imagi-
native enthusiasm, describing in great detail the physical
implication that a topologically complex ether would have.?

Kelvin’s revolutionary idea to describe fundamental
physics through topological properties not only motivated
the first studies on the existence and stability of knotted
vortices (1875), but also stimulated the interest of many
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New mathematical techniques and greater
computational power have made it
possible to apply knot theory and braid
theory to fluid flows.
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of his most distinguished
colleagues and friends.?
Whereas Tait never suc-
ceeded in experimentally
reproducing knotted vortex
rings, Kelvin’s ideas of vor-
tex atoms motivated Tait to
produce the first knot table,
similar to the modern atom’s
periodic table. His mathe-
matical classification of knots and links became a funda-
mental piece of work (see figure 1).* Influenced by Maxwell’s
appreciation of Gauss’s and Listing’s ideas, Tait tried in 1876
to measure by electromagnetic means topological properties
such as knot type, which he called “beknottedness.”

But it was Maxwell, more than any other, who truly
saw the physical implications of topology® The whole
preface of his Treatise on electricity and magnetism is
permeated by topological ideas. He develops Listing’s
original ideas of multiply connected regions to study the
relationship of electricity and magnetism to forces and
potentials. Maxwell notices that if we express a locally
conservative force as the gradient of a potential function,
then that function will be well defined—that is, single-
valued—only inside a simply connected region. (An ex-
ample of a simply connected region in the plane is a
circular patch, while a doubly connected region is a patch
with a hole in it.) Moreover, he gives a remarkable
example of a particular case of Gauss’s linking formula
for linked magnetic tubes in the section devoted to mag-
netism.

While Kelvin's dream of explaining atoms as knotted
vortex rings in a fluid ether never came to fruition (despite
remarkable analogies with modern string theory), his work
was seminal in the development of a topological approach
to fluid dynamics. When Leon Lichtenstein published his
1929 book on hydrodynamics, two of the eleven chapters
were dedicated to topological ideas.? But the difficulty of
an immediate application and testing of these ideas lim-
ited for many years the use of topological concepts. In
recent years, the application of modern results from to-
pology and knot theory and greater access to direct nu-
merical simulation of fluid flows have led to new devel-
opments in the qualitative study of fluid mechanics.® In
this article we give a few examples that show how knot
theory and braid theory provide valuable information on
fluid mechanical problems.

Links and knots

Knotted and linked structures are ubiquitous in nature
and in fluid flow in particular. Their scale lengths range
from 101°-10% m for superfluid vortices; to 102-10> m
for fluid eddies, vortex filaments and tornadoes; and may
reach 10%-10° m as in the case of magnetic flux tubes,
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KNOTS AND LINKS,
diagrammed by Peter Tait* and
first published in 1877. Tait
calculated the linking number
Lk, which he called
“belinkedness,” of the
two-component links 10-14
(third row). The magnitude of
the linking number is that of
one-half the sum of the signs of
the crossings in the link
diagram. One assigns a
direction to each curve and
uses a right-hand rule to assign
+1 or —1 to crossings. For
example, if a line going from
south to north crosses over a
line going from east to west,
one assigns +1 to the crossing.
Every link can be projected to

the plane with a minimum
number of crossings, so that Lk
is a topological invariant of the
link type. Links 10, 12 and 13
each have Lk = +2, whereas
links 11 (equivalent to two
unlinked rings) and 14 have

Lk = 0 (disregarding the
self-crossings of each link
component). The fact that
non-trivial links may have

Lk = 0 was actually first
discovered by Maxwell in his
study of magnetic links such as
link 14 (see reference 5, volume
2, article 421). Tait gave a
physical explanation for this
and studied magnetic effects
induced by currents flowing

in linked wires in his

ST

(unsuccessful) attempt to

A

plasma loops and magnetic arches in stellar atmospheres.
Observational and experimental evidence of complex
braided and entangled fluid structures is now well docu-
mented in the literature, in the context of both classical
fluid mechanics and magnetohydrodynamics.”

The presence of tube-like structures at different
length scales seems to be a generic feature of organized
fluid patterns. Although in real fluids these structures
may be rather evanescent (because of dissipative effects),
their lifetime can be long enough for them to transport
physical properties efficiently throughout the fluid, mak-
ing them important mediators between different stages of
fluid evolution. If there is strong coherency, and if motion
is little influenced by dissipative forces, then their dynam-
ics can be crudely modeled by ideal fluid mechanics—that
is, by Euler’s equations. Tube-like structures such as
vortex filaments and magnetic flux-tubes are indeed

measure topological properties
experimentally. FIGURE 1

mathematical idealizations. They may be thought of as
a bundle of cooked spaghetti (representing vortex lines or
magnetic lines) that pressure gradients keep bound to-
gether in a tubular shape.

In an ideal fluid there are no dissipative effects; this
means that fluid structures cannot diffuse or die out freely.
A change in the fluid pattern due to physical recombina-
tion or reconnection of fluid structures cannot take place
without viscous or resistive effects. Therefore, vortex or
magnetic line topology is frozen in the ideal fluid while
the structures of these objects, in continuous motion, can
be highly distorted by the background flow. This means
that if these tubes are initially knotted or linked, they
will evolve and deform in the ideal fluid by preserving
the type of knot or link that ties them together, even
though their geometry may become utterly complicated
(think of the difficulty of disentangling unknotted tele-
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phone cords). This is a fundamental, intrinsic property
of the governing equations (the Cauchy equations), whose
topological implications were studied in great detail by
Lichtenstein® back in the 1920s. Topological properties of
ideal fluids are therefore flow-invariant,® and physical
information expressed in pure topological terms is there-
fore bound to be conserved as well.

That Euler’s equations conserve certain physical
quantities such as kinetic energy, linear and' angular
momentum and vortex strength is well known. In the
late 1960s, a seminal work of Henry Keith Moffatt?
followed by a series of other contributions,!® established
new fundamental connections between ideal fluid mechan-
ics and topology. This work is based on the topological
interpretation of a new fluid invariant, known as helicity.
Under Euler’s equations the helicity of a vortex tube of
vorticity @ and velocity u is defined by

H=[u wdv 1

The integral is taken over the tube volume V occupied by
. Now, for n knotted and linked vortex tubes, each of
(constant) strength (total vorticity) ®; (1<i<N), the
helicity of the whole system can be expressed in terms of
linking numbers Lk; as

ij
Lk;; (the case of self-linking, when i = j) is none other
than the linking number of the ith vortex tube, which
may be knotted and twisted in the fluid. Lk, which is
equal to Lk;, is a topological invariant whose value does
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TORUS KNOTS representing thin vortex
filaments. Torus knots (generally
denoted by T,,,, with p and g relatively
prime integers) are non-self-intersecting
closed curves wrapped around a
mathematical torus (such as a ring) p
times in the longitudinal direction (along
the large circumference of the ring) and
g times in the meridional direction
(along the small circumference). The
knots shown here are 7) 5 (a) and T3,
(b). Such thin vortices are steady
solutions of ideal fluid mechanics: Like
vortex rings, they translate and rotate in
the fluid without change of shape.!!
FIGURE 2

not change under continuous deforma-
tion of the fluid structure. Since helic-
ity and flux-tube strength are meas-
urable conserved quantities, equation
2 provides useful information about
the topology of the flow field. This
equation is indeed applied to analyze
flow structures.® By direct measure-
ments of helicity and application of
conservation of topology, one can esti-
mate average geometric quantities,
such as the mean twist of field lines,
and their contribution to the total en-
ergy. Moreover, the magnetic analog
of kinetic helicity is particularly important for the study
of twisted magnetic fields in plasma physics and tokamak
fusion.

Since J. J. Thomson’s work on linked vortices,® some
progress has been made regarding the existence of vortex
knots, as part of more general research on dynamical
systems exhibiting topologically complex patterns. These
include vortex filaments in the shape of torus knots.!!
One of the easiest ways to construct these knots is to
wrap a string around a doughnut, or torus. Let the string
go around the doughnut g times the short way around,
and p times the long way around, then join the two ends
of the string. Now eat the doughnut, leaving the string
behind—the string will then form the torus knot 7}, ,. (See
figure 2.) Vortex filaments in the shape of torus knots
move through the fluid in a remarkably simple manner:
They translate in the fluid at a constant velocity while
rotating like a rigid body. Although these vortices repre-
sent solutions of ideal fluid mechanics, their study pro-
vides useful information on the stability and evolution of
fluid structures.

Braids

A geometric braid is a set of N intertwined curves stretch-
ing between two parallel planes. The curves can be
specified by two coordinate functions of height z: [x,(2),
¥l i=1...,N; 0<z<L. A knotted curve, on the
other hand, requires three coordinate functions of arc-
length. From this viewpoint, braids are simpler objects
than knots and links and hence provide a promising
starting point for studies of topological aspects of fluids.



Two geometric braids are topologically equivalent if one
can be deformed into the other by motions that keep the
two boundary planes fixed. Topological equivalence classes
of braids can be readily classified using group theory, whereas
the classification of knots is still a difficult problem.

Suppose we replace the letter z by £. The braid
becomes [x{1), y(£); ¢ =1 ,..., N;0<¢<T, a time history
of the motions of N particles moving in two dimensions.
Braids as time histories are useful in the study of dynami-
cal systems. For example, a braid’can represent the paths
of the particles in a two-dimensional N-body simulation.
Alternatively, a braid can describe the intertwining of a
set of phase curves [x;(t), x,(¢)] in a one-dimensional dy-
namical system.

There are astrophysical applications as well. Mag-
netic features on the surface of the Sun (small but intense
concentrations of magnetic flux) can random walk about
each other due to the turbulent convection below the
surface. A braid representing the time history of these
motions provides topological information about the mag-
netic field above the surface—in the solar corona. In
active regions, where most flares take place, the magnetic
field lines emerging from one surface element loop through
the corona, only to plunge down into another surface
element. (See figure 3.) As these elements move about
each other, the loops above become entangled with the
same topological structure as the time history braid.2
The coronal field, of course, cannot keep on tangling

forever. Violent reconnection events break down the topo-
logical structure. These events may be observed on Earth
as tiny flares (microflares) and probably play an important
role in larger flares and in the gigantic coronal mass
ejections.” They may also be the source of heat keeping
the corona at 2 x 106 K.

The supply of heat to solar and stellar coronae pre-
sents a difficult problem for astrophysicists. The heating
rate due to the reorganization of magnetic fields depends
on the rate of topological entanglement at the photosphere,
and on the saturation level of the coronal magnetic field—
that is, the level at which magnetic reconnections on
average remove structure at the same rate as the input.

Both the commutativity of twist and the relaxation
of braids into minimal patterns have relevance here. (See
the box below.) An important part of the topological
structure comes from twisting caused by vortical motions
at the star’s photosphere. Because twist commutes with
other structures, opposite senses of twist on a tube can
cancel. Random vorticity (sometimes positive, sometimes
negative) yields only a root-mean-square twist, corre-
sponding to a magnetic energy growing linearly in time.
The power input is then independent of time, and thus
essentially independent of the time needed to reach satu-
ration. This would be nice for the theorist, but unfortu-
nately the amount of photospheric vorticity needs to be
quite high to match observed heating rates.

More complex braid structures generally do not com-

n many situations a set of vortices or magn

tails and magnetic fields
intertwine about each other, while staying more or less parallel.

A topological description of the intertwining involves braid theory. Braids, like knots, have a long history in human
technology. Straw hats, for example, are made from long strips of intertwined pieces of straw. Some areas of 19th century
rural England had their own distinctive braid patterns, learned assiduously by the young girls employed in the straw industry.
Perhaps the most common use of braids today is in plaiting hair into pigtails.

Even simple pigtails have interesting mathematical features. As an illustration, suppose that it becomes fashionable among

students to braid their hair using ever more elaborate

- patterns. As the competition to find novel patterns
heats up, two mathematical properties would become

~ apparent.

~ First, uniform twists commute with all other braid
structures. The ends of a pigtail are bound together by
aband or ribbon that is free to rotate; adding a uniform
twist is useless because it can just travel to the end and
disappear. For this reason, pigtails contain at least three
bunches of hair (two braided curves can only be
W . :

- Second, there are special braid patterns of minimal

~ complexity. A student plaiting her hair according to
the first pattern in the figure may be disappointed to
discover, after a few hours, that her hair has rearranged
itself into the passe standard pigtail (second pattern).

- Both the commutativity of twist and the relaxation
into minimal patterns are important in the study of

- magnetic braids.

. TOPOLOGICALLY EQUIVALENT braids. Each braid is
made of three strings and has an apparently
different number of string crossings. By simply

~ rearranging the strings, without moving the end
points of the braid, the braid on the left can be
transformed to the one on the right, which gives
the standard pattern for pigtails and possesses the
minimum number of crossings (six).
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mute, and hence do not totally cancel. However, struc-
tures do have some freedom to relax to minimal patterns,
corresponding to minimum energy states, or equilibria, of
the magnetic field. Researchers have recently determined
lower bounds on equilibrium energy for given measures
of topological complexity based on numbers of crossings
of braided structures.®® These bounds are expressed by
relationships of the kind

Eoin2 f(Con, ®, V,N) (3)

where E ;. is the equilibrium energy and f gives the
relationship between physical quantities—such as total
flux @, number of tubes N, magnetic volume V—and
topology, given here by the minimum possible number of
crossings C;,. These relations offer numerous advan-
tages due to the explicit dependence on qualitative prop-
erties of the flow field. A simple example is provided by
the analysis of three braids, which confirms a prediction
by Eugene N. Parker of the University of Chicago that
magnetic energy grows quadratically in time due to ran-
dom braiding. This means that heat input associated with
the magnetic field depends linearly on the saturation level.
The heating rates predicted for reasonable guesses as to

SOFT X-RAY IMAGE OF THE SUN taken by the Yohkoh solar research spacecraft on 12 February
1992. Magnetic fields in the solar atmosphere align the hot x-ray-emitting plasma into
filaments. The complexity of the filamentary structure suggests that the magnetic field stores
excess energy. When released, this energy can drive flares and eject plasma into space.
Topological techniques based on crossing numbers and helicity provide estimates of the
amount of energy stored in the magnetic field. The x-ray telescope on Yohkoh was prepared
by the Lockheed Palo Alto Research Laboratory, the National Astronomical Observatory of
Japan and the University of Tokyo with the support of NASA and the Japanese Institute for

Space and Astronautical Science. FIGURE 3

the saturation level seem to be consistent with astrophysi-
cal observations. For more complex topologies (highly
tangled fields), though, finding a magnetic equilibrium
presents considerable computational difficulties.

A hybrid twisting and tangling model may yet be the
most efficient. For solar coronal loops (figure 3), for
example, rotation of individual photospheric magnetic ele-
ments proceeds more quickly than the braiding of several
elements; but as mentioned earlier, twist tends to cancel.
However, magnetic elements at the photosphere do not
last forever. Sometimes the flux within an element can
break loose and wander across the photosphere, later to
combine with other free flux to be concentrated into new
magnetic elements. If the elements break up and reform
before the sense of vorticity changes sign, then the twist
will be trapped within a more complicated braid structure,
preventing cancellation.

Relaxation of fat knots and charged links
Topologically interesting magnetic equilibria can be found
by studying the relaxation of magnetic knots. Start with
a knotted magnetic flux tube not in equilibrium. The
nonequilibrium Lorentz forces in first approximation in-
duce shortening of magnetic
lines. These effects manifest
themselves through a ten-
sion present in the tube field
that makes it behave like a
contracting rubber band.
Equilibria for magnetic en-
ergy can be found by follow-
ing the physical process of
magnetic relaxation using a
simple model fluid. A per-
fectly conducting, incom-
pressible and viscous fluid is
a good candidate. Knotted
magnetic flux tubes left free
to evolve in such a fluid will
do so by conserving their
magnetic flux ® and volume
V, but converting their mag-
netic energy into kinetic en-
ergy, which in turn dissipates
by internal friction. Mag-
netic links and knots evolve
from high to low magnetic
energy levels, conserving to-
pology; and because of the
induced shortening of field
lines under conservation of
volume, they become fatter
and fatter, with an increase
of the average tube cross-sec-
tion. Evidently, this process
of energy reduction must
come to a halt when different
parts of the tube come in
contact with each other:
Further relaxation is ob-
structed by the knottedness
and entanglement of the
field lines, and a minimum
magnetic energy is reached.
Various estimates of
magneto-mechanical energy
in terms of topological quan-
tities have been put forward
in recent years.®!%4 These
relations give lower bounds
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INTERACTION AND LINKING of two
elliptical vortex rings. The initial
configuration in this numerical
simulation is two unlinked rings in
parallel planes, placed one in front of
the other (top row). As time passes,
they interact and reconnect at two
sites, with an exchange of strands
(second and third rows). The final
result (bottom row) is a linked pair of
vortex rings with some dissipation and
diffusion of vorticity (not visualized).
(From H. Aref, I. Zawadzki, reference
18.) FIGURE 4

for the energy levels attainable by
knot or link types by taking into
account the effects that linking num-
bers and number of crossings have
on the energy of the relaxed state
(see equation 3). This means that
the least possible amount of magnetic
energy that can be attained by the
physical knot or link is determined
purely by its topology. If topological

information sets the levels of mini-
mum energy accessible to the knot or
link, geometric properties may also
influence the relaxation process.
Considerations of helicity and linking
numbers, for example, demonstrate
that internal rearrangement of mag-
netic field geometry leads to a spec-
trum of different asymptotic end-
states with the same topology.!
Moreover, magnetic knots have a
natural tendency to get rid of exces-
sive torsion of field lines and S-
shaped tube geometries, and this
may influence the relaxation process.

Perhaps new relations that involve
an interplay between geometric and
topological quantities will be neces-
sary if we want to understand which
equilibria are realizable.

Another case of topological re-
laxation with different energy func-
tions is given by considering linked
electric wires. Two flexible closed
wires, such as two rings, linked
through one another and carrying
static electric charges provide a sim-
ple example. Now suppose that the
whole system is embedded in a very
viscous fluid, like honey, but electri-

cally neutral. The electric charges
are confined to the circuits and in-
duce repulsive Coulomb forces that
act on the strands of the wires. Because of mutual
repulsion, the system progressively relaxes to a least possible
energy state by reducing potential and kinetic energy.

The exact process depends on the actual physical wire:
a thin or thick rod, made of a perfect conductor or not.
By using various techniques, the accessible energy can

again be related to topology via, for example, the minimal
number of crossings.!* The potential energy function is
refined further when the elastic properties of the rods are
important. Then, elastic tension and internal stress con-
tribute to the relaxation process and modify the system’s
topological ground-state energy.
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Reconnections and change of topology

So far our discussion has explicitly excluded changes of
topology. But topological changes do occur when dissipa-
tive effects become predominant over the coherency of
structures. When this happens there is a dramatic change
of fluid patterns, often on small time-scales compared to
evolution. The change occurs through the formation and
disappearence of physical reconnections in the fluid pat-
tern. In real fluids, for example, vortex and magnetic
tubes do interact and reconnect freely. From a dynamical
system viewpoint, reconnections take place when the vec-
tor field lines (streamlines, vortexslines or magnetic lines)
cross each other. If two field lines meet, the point of
crossing is a true nodal point, like a bifurcation in a path,
where there is more than one choice of direction. Dissi-
pative effects allow the reconnection to proceed through
such points.!®

Analytical and numerical studies of flow patterns
show that bifurcations of the field lines occur when con-
figurations are degenerate, as with interfacial flows in the
vicinity of a solid boundary. (Think of the flow separation
at the nose of an airfoil.) When these events dominate
the physics, we can still use a combination of topological,
probabilistic and combinatorial techniques to predict av-
erage properties and long-term evolution.'®

As local processes, reconnections are difficult to de-
scribe and are still a puzzle for theorists. One simple
mathematical approach, which must be mediated by de-
tailed knowledge of the particular physical process, in-
volves techniques of “oriented surgery,” performed on the
bundle of constitutive vector field lines. Vector field lines
are oriented curves, whose arrows give the direction of
the field they represent. A physical knot can be seen as
a knotted tubular bundle made of oriented curves. When
two strands of the bundle come into contact, vector
lines of one strand may recombine with vector lines of the
other by a “cut and connect” process, which preserves
orientation. (See figure 4.) This process of surgery can
be represented by the sketch

o' ‘$ ’ 2 “ i * “
T N > _
L} _" 1 r
' ) / IE '\ K
which shows how a local event may have a global effect.

When this happens, we have a complete change of
the topology of the system. Various studies have been
done analytically, experimentally and now computation-
ally, to understand the key features of reconnection.® An
early example of this is given by Kelvin's unsuccessful
experiments to produce linked vortex rings, when he
noticed how efficiently smoke rings reconnect and reor-
ganize themselves after collision? Recent numerical
work, based on direct numerical simulation of the Navier—
Stokes equations and of magnetohydrodynamics, attempts
to create topologically interesting structures. These stud-
ies show that the efficiency of reconnection seems to be
strongly influenced by local geometric properties given,
for example, by the relative inclination of the tube
strands.!” Orientation-preserving surgery and efficiency
of the process are therefore two important features for
topological diagnosis of fluid flows.

In dissipative fluids, mathematical and physical prop-
erties are no longer conserved, and during the process we
lose part of the original information. Some of the invari-
ants, though, are rather robust and may only degrade
slowly. One of them is magnetic helicity, the magnetic
analogue of the kinetic helicity (equation 1). Its dissipa-
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tion during reconnection can be modest; in particular, if
the reconnection timescale is small compared to classical
dissipation times, then helicity loss will be negligible.
(See, for example, the paper by Freedman and Berger in
reference 16.) The robustness of magnetic helicity plays
a central role in fusion plasma physics and in many
astrophysical contexts—for example, in the theory con-
cerned with the spontaneous growth of magnetic fields in
electrically-conducting fluids. On the other hand, large
changes in kinetic helicity are intimately related to quali-
tative changes in the topology of vortex flows. Helicity
and topological estimates, together with detailed knowl-
edge of reconnections, can prove to be very useful for the
characterization and classification of the most fundamen-
tal fluid mechanisms.®

Ricca’s work is supported by the Leverhulme Trust.
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